Matching Items (126)
132854-Thumbnail Image.png
Description
The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol

The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol production through the use of Photosystem II (PSII) herbicides that are known to inhibit the QB quinone site in Type II RCs. Seven herbicides were chosen, and out of all of them terbuthylazine showed the greatest effect on the RC in isolated membranes when Transient Absorption Spectroscopy was used. In addition, terbuthylazine decreased menaquinone reduction to menaquinol by ~72%, slightly more than the reported effect of teburtryn (68%)1. In addition, terbuthylazine significantly impacted growth of whole cells under high light more than terbutryn.
ContributorsOdeh, Ahmad Osameh (Author) / Redding, Kevin (Thesis director) / Woodbury, Neal (Committee member) / Allen, James (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134256-Thumbnail Image.png
Description
This thesis examines Care Not Cash, a welfare reform measure that replaced traditional cash General Assistance program payments for homeless persons in San Francisco with in-kind social services. Unlike most welfare reform measures, proponents framed Care Not Cash as a progressive policy, aimed at expanding social services and government care

This thesis examines Care Not Cash, a welfare reform measure that replaced traditional cash General Assistance program payments for homeless persons in San Francisco with in-kind social services. Unlike most welfare reform measures, proponents framed Care Not Cash as a progressive policy, aimed at expanding social services and government care for this vulnerable population. Drawing on primary and secondary documents, as well as interviews with homelessness policy experts, this thesis examines the historical and political success of Care Not Cash, and explores the potential need for implementation of a similar program in Phoenix, Arizona.
ContributorsMcCutcheon, Zachary Ryan (Author) / Lucio, Joanna (Thesis director) / Williams, David (Committee member) / Bretts-Jamison, Jake (Committee member) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135431-Thumbnail Image.png
Description
The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the

The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the cobalt porphyrin’s in organic solutions gassed with carbon dioxide. The cobalt porphyrin yielded larger catalytic currents, but at the same potential as the electrode. This difference, along with the significant changes in the porphyrin’s electronic, optical and redox properties, showed that its capabilities for carbon dioxide reduction can be controlled by metal ions, allotting it unique opportunities for applications in solar fuels catalysis and photochemical reactions.
ContributorsSkibo, Edward Kim (Author) / Moore, Gary (Thesis director) / Woodbury, Neal (Committee member) / School of Molecular Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
168649-Thumbnail Image.png
Description
The imaging and detection of specific cell types deep in biological tissue is critical for the diagnosis of cancer and the study of biological phenomena. Current high-resolution optical imaging techniques are depth limited due to the high degree of optical scattering that occurs in tissues. To address these limitations, photoacoustic

The imaging and detection of specific cell types deep in biological tissue is critical for the diagnosis of cancer and the study of biological phenomena. Current high-resolution optical imaging techniques are depth limited due to the high degree of optical scattering that occurs in tissues. To address these limitations, photoacoustic (PA) techniques have emerged as noninvasive methods for the imaging and detection of specific biological structures at extended depths in vivo. In addition, near-infrared (NIR) contrast agents have further increased the depth at which PA imaging can be achieved in biological tissues. The goal of this research is to combine novel PA imaging and NIR labeling strategies for the diagnosis of disease and for the detection of neuronal subtypes. Central Hypothesis: Utilizing custom-designed PA systems and NIR labeling techniques will enable the detection of specific cell types in vitro and in mammalian brain slices. Work presented in this dissertation addresses the following: (Chapter 2): The custom photoacoustic flow cytometry system combined with NIR absorbing copper sulfide nanoparticles for the detection of ovarian circulating tumor cells (CTCs) at physiologically relevant concentrations. Results obtained from this Chapter provide a unique tool for the future detection of ovarian CTCs in patient samples at the point of care. (Chapter 3): The custom photoacoustic microscopy (PAM) system can detect genetically encoded near-infrared fluorescent proteins (iRFPs) in cells in vitro. Results obtained from this Chapter can significantly increase the depth at which neurons and cellular processes can be targeted and imaged in vitro. (Chapter 4): Utilizing the Cre/lox recombination system with AAV vectors will enable selective tagging of dopaminergic neurons with iRFP for detection in brain slices using PAM. Thus, providing a new means of increasing the depth at which neuronal subtypes can be imaged and detected in the mammalian brain. Significance: Knowledge gained from this research could have significant impacts on the PA detection of ovarian cancer and extend the depth at which neuronal subtypes are imaged in the mammalian brain.
ContributorsLusk, Joel F. (Author) / Smith, Barbara S. (Thesis advisor) / Halden, Rolf (Committee member) / Anderson, Trent (Committee member) / Arizona State University (Publisher)
Created2022
171888-Thumbnail Image.png
Description
Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of

Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of the predicted robustness of CD8+ T cell responses in 23 different populations. The robustness of CD8+ T cell responses in a given population was modeled by predicting the efficiency of endemic MHC-I protein variants to present peptides derived from SARS-CoV-2 proteins to circulating T cells. To accomplish this task, an algorithm, called EnsembleMHC, was developed to predict viral peptides with a high probability of being recognized by CD T cells. It was discovered that there was significant variation in the efficiency of different MHC-I protein variants to present SARS-CoV-2 derived peptides, and countries enriched with variants with high presentation efficiency had significantly lower mortality rates. Second, a biophysics-based MHC-I peptide prediction algorithm was developed. The MHC-I protein is the most polymorphic protein in the human genome with polymorphisms in the peptide binding causing striking changes in the amino acid compositions, or binding motifs, of peptide species capable of stable binding. A deep learning model, coined HLA-Inception, was trained to predict peptide binding using only biophysical properties, namely electrostatic potential. HLA-Inception was shown to be extremely accurate and efficient at predicting peptide binding motifs and was used to determine the peptide binding motifs of 5,821 MHC-I protein variants. Finally, the impact of stalk glycosylations on NL63 protein dynamics was investigated. Previous data has shown that coronavirus crown glycans play an important role in immune evasion and receptor binding, however, little is known about the role of the stalk glycans. Through the integration of computational biology, experimental data, and physics-based simulations, the stalk glycans were shown to heavily influence the bending angle of spike protein, with a particular emphasis on the glycan at position 1242. Further investigation revealed that removal of the N1242 glycan significantly reduced infectivity, highlighting a new potential therapeutic target. Overall, these investigations and associated innovations in integrative modeling.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis advisor) / Singharoy, Abhishek (Thesis advisor) / Woodbury, Neal (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2022
190962-Thumbnail Image.png
Description
Wastewater-based epidemiology (WBE) has emerged as a powerful tool for community health assessment, using wastewater-borne biological and chemical markers as analytical targets. This study investigates the critical influence of sampling frequency on the resultant estimates of opioid consumption and the prevalence of SARS-CoV-2 infections at the neighborhood level using common

Wastewater-based epidemiology (WBE) has emerged as a powerful tool for community health assessment, using wastewater-borne biological and chemical markers as analytical targets. This study investigates the critical influence of sampling frequency on the resultant estimates of opioid consumption and the prevalence of SARS-CoV-2 infections at the neighborhood level using common WBE biomarkers including fentanyl, norfentanyl, and the SARS-CoV-2 N1 gene as targets. The goal was to assess sampling methodologies that include the impact of the day of the week and of the sampling frequency. Wastewater samples were collected two or three times per week over the course of five months (n=525) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) for target chemical or molecular indicators of interest. Results showed no statistically significant differences for days of the week (i.e., Tuesday vs. Thursday vs. Saturday) for 24-hour composite samples analyzed for fentanyl or SARS-CoV-2; however, concentrations of the human metabolite of fentanyl, norfentanyl, were statistically different between Tuesday and Saturday (p < 0.05). When data were aggregated either by Tuesday/Thursday or Tuesday/Thursday/Saturday to examine sensitivity to sampling frequency, data were not statistically different except for the Tuesday/Thursday weekly average and Saturday for norfentanyl (p < 0.05). These results highlight how sample collection and data handling methodologies can impact wastewater-derived public health assessments. Care should be taken when selecting an approach to the sampling frequency based on the public health concerns under investigation.
ContributorsAJDINI, ARIANNA (Author) / Halden, Rolf (Thesis advisor) / Driver, Erin (Committee member) / Conroy-Ben, Otakuye (Committee member) / Arizona State University (Publisher)
Created2023
Description
Current methods for quantifying microplastics via LC-MS/MS analysis have been adapted from environmental monitoring protocols and are often inadequate for sampling within complex matrices. This study explores the application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection of microplastics. The initial phase of this research utilized pork kidney

Current methods for quantifying microplastics via LC-MS/MS analysis have been adapted from environmental monitoring protocols and are often inadequate for sampling within complex matrices. This study explores the application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection of microplastics. The initial phase of this research utilized pork kidney samples to establish a baseline for background and efficacy of sample processing. These findings underscore the complexity of developing a sensitive and specific analytical technique for microplastics in tissues. The observed discrepancies in contamination and replicability between samples emphasize the need for continual method optimization.
ContributorsBabbrah, Ayesha (Author) / Halden, Rolf (Thesis director) / Newell, Melanie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-12