Matching Items (389)
Filtering by

Clear all filters

152098-Thumbnail Image.png
Description
Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a

Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned envelope types. Energy consumption data, along with various other details, such as building floor area, areas of walls, columns, beams etc. and their material types were imported into Life-Cycle Assessment software called ATHENA impact estimator for buildings. Using this four-stepped LCA methodology, the results showed that the Steel Stud envelope performed the best and less environmental impact compared to other envelope types. This research methodology can be applied to other building typologies.
ContributorsRamachandran, Sriranjani (Author) / Bryan, Harvey (Thesis advisor) / Reddy T, Agami (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
151323-Thumbnail Image.png
Description
This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.
ContributorsRedd, Thomas Christopher (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Darnall, Nicole (Committee member) / Arizona State University (Publisher)
Created2012
152810-Thumbnail Image.png
Description
Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible

Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible approaches to design and sustainability were analyzed using content analysis techniques. The results show several recommendations to minimize product impacts through design, and dimensions to which they belong. Two products made by a manufacturing firm with exceptional commitment to environmental responsibility were studied to understand how design approaches and assessment methods were used in their development. The results showed that the company used several strategies for environmentally responsible design as well as assessment methods in product and process machine design, both of which resulted in reduced environmental impacts of their products. Factors that contributed positively to reduce impacts are the use of measurement systems alongside environmentally responsible design, as well as inspiring innovations by observing how natural systems work. From a managerial perspective, positive influencing factors included a commitment to environmental responsibility from the executive level of the company and a clear vision about sustainability that has been instilled from the top through every level of employees. Additionally, a high degree of collaboration between the company and its suppliers and customers was instrumental in making the success possible.
ContributorsHuerta Gajardo, Oscar André (Author) / Giard, Jacques (Thesis advisor) / White, Philip (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152925-Thumbnail Image.png
Description
Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not

Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not biodegrade and are lost rather than recycled. This study analyzes a system that attempts to solve the electronic post-consumer-waste problem by shifting the economic burden of disposal from local municipalities to producers, reducing its environmental impacts while promoting economic development. The system was created in British Columbia, Canada after the province enacted a recycling regulation based on Extended Producer Responsibility (EPR), a policy strategy that is fast growing globally. The BC recycling regulation requires all e-toy corporations in BC to comply with a government-approved product-stewardship program to recover and dispose of e-toys after they have been discarded by consumers. In response to the regulation, e-toy corporations joined a Canadian non-profit entity that recycles regulated waste. I conducted a case study using in-depth interviews with the stakeholders to identify the outcomes of this program and its potential for replication in other industries. I derived lessons from which corporations can learn to implement stewardship programs based on EPR regulations. The e-toy program demonstrated that creating exclusive programs is neither efficient nor economically feasible. Corporations should expect low recycling rates in the first phases of the program implementation because EPR regulations are long-term strategies. In order to reach any conclusions about the demand of consumers for recycling programs, we need to measure the program's return rates during at least three years. I also derived lessons that apply to the expansion of EPR regulations to a broader scope of product categories. The optimal way to expand EPR policy is to do it by gradually adding new product categories to the regulation on a long-term schedule. By doing so, new categories can take advantage of existing stewardship programs and their infrastructure to recover and recycle the post-consumer products. EPR proved to be an effective option to make corporations start thinking about the end of life of their products.
ContributorsNemer Soto, Andrea (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2014
152838-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread

Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread application. To overcome this, researchers have recently created probabilistic underspecification as an LCA streamlining method, which uses a structured data classification system to enable an LCA modeler to specify materials and processes in a less precise manner. This study presents a statistical procedure to understand when streamlined LCA methods can be used, and what their impact on overall model uncertainty is. Petrochemicals and polymer product systems were chosen to examine the impacts of underspecification and mis-specification applied to LCA modeling. Ecoinvent database, extracted using GaBi software, was used for data pertaining to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results arising out of streamlined materials classification, the developed statistics estimate the amount of overall error incurred by underspecifying and mis-specifying material impact data in streamlined LCA. To test the impact of underspecification and mis-specification at the level of a product footprint, case studies of HDPE containers and aerosol air fresheners were conducted. Results indicate that the variation in LCA results decreases as the specificity of materials increases. For the product systems examined, results show that most of the variability in impact assessment is due to the differences in the regions from which the environmental impact datasets were collected; the lower levels of categorization of materials have relatively smaller influence on the variance. Analyses further signify that only certain environmental impact categories viz. global warming potential, freshwater eutrophication, freshwater ecotoxicity, human toxicity and terrestrial ecotoxicity are affected by geographic variations. Outcomes for the case studies point out that the error in the estimation of global warming potential increases as the specificity of a component of the product decreases. Fossil depletion impact estimates remain relatively robust to underspecification. Further, the results of LCA are much more sensitive to underspecification of materials and processes than mis-specification.
ContributorsMurali, Ashwin Krishna (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
153438-Thumbnail Image.png
Description
Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms.

As a first step in developing a fundamental understanding of the cavitation erosion process on polymer surfaces, simulations are performed of the collapse of individual bubbles against a compliant surface e.g. metallic substrates with polyurea coatings. The surface response of collapse-driven impact loads is represented by a idealized, time-dependent, Gaussian pressure distribution on the surface. A two-dimensional distribution of load radii and durations is considered corresponding to characteristic of cavitating flows accelerated erosion experiments. Finite element simulations are performed to fit a response curve that relates the loading parameters to the energy dissipated in the coating and integrated with collapse statistics to generate an expected heat input into the coating.

The impulsive pressure, which is generated due to bubble collapse, impacts the material and generates intense shock waves. The stress waves within the material reflects by interaction with the substrate. A transient region of high tensile stress is produced by the interaction of these waves. Simulations suggests that maximum hydrostatic tension which cause failure of polyurea layer is observed in thick coating. Also, the dissipated viscous energy and corresponding temperature rise in a polyurea is calculated, and it is concluded that temperature has influence on deformation.
ContributorsPanwar, Ajay (Author) / Oswald, Jay (Thesis advisor) / Dooley, Kevin (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153197-Thumbnail Image.png
Description
The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been

The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been conducted on comparative Life Cycle Assessment (LCA) of the application of these nano-TiO2 particles in the sunscreen lotion as a UV-blocker with the conventional organic chemical sunscreen lotion using GaBi software. Nano-TiO2 particles were identified in the sunscreen lotion using Transmission Electron Microscope suggesting the use of these particles in the lotion.

The LCA modeling includes the comparison of the environmental impacts of producing nano-TiO2 particles with that of conventional organic chemical UV-blockers (octocrylene and avobenzone). It also compares the environmental life cycle impacts of the two sunscreen lotions studied. TRACI 2.1 was used for the assessment of the impacts which were then normalized and weighted for the ranking of the impact categories.

Results indicate that nano-TiO2 had higher impacts on the environment than the conventional organic chemical UV-blockers (octocrylene and avobenzone). For the two sunscreen lotions studied, nano-TiO2 sunscreen variant had lower environmental life cycle impacts than its counterpart because of the other chemicals used in the formulation. In the organic chemical sunscreen variant the major impacts came from production of glycerine, ethanol, and avobenzone but in the nano-TiO2 sunscreen variant the major impacts came from the production of nano-TiO2 particles.

Analysis further signifies the trade-offs between few environmental impact categories, for example, the human toxicity impacts were more in the nano-TiO2 sunscreen variant, but the other environmental impact categories viz. fossil fuel depletion, global warming potential, eutrophication were less compared to the organic chemical sunscreen variant.
ContributorsThakur, Ankita (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014
149888-Thumbnail Image.png
Description
ABSTRACT In an attempt to advocate body-conscious design and healing work environments, this research study of holistic health in the workplace explores cognitive, social and physical well-being in four small US offices that are between 1000 and 4000 square feet and employ three to twelve employees. Holistic health, as pursued

ABSTRACT In an attempt to advocate body-conscious design and healing work environments, this research study of holistic health in the workplace explores cognitive, social and physical well-being in four small US offices that are between 1000 and 4000 square feet and employ three to twelve employees. Holistic health, as pursued in this research, includes social health, emotional health and physical health. These three factors of holistic health have been identified and investigated in this study: biophilia: peoples' love and affiliation with other species and the natural environment; ergonomics: the relationship between the human body, movement, the immediate environment and productivity; and exercise: exertion of the body to obtain physical fitness. This research study proposes that employees and employers of these four participating workplaces desire mobility and resources in the workplace that support holistic health practices involving biophilia, ergonomics, and exercise. Literature review of holistic health and the holistic health factors of this research topic support the idea that interaction with other species can be healing, ergonomic body-conscious furniture and equipment increase productivity, limit body aches, pains and health costs; and exercise stimulates the mind and body, increasing productivity. This study has been conducted primarily with qualitative and flexible research approaches using observation, survey, interview and pedometer readings as methods for data collection. Two small corporate franchise financial institutions and two small private healthcare providers from both Arizona and Georgia participated in this study. Each office volunteered one employer and two employee participants. Of the holistic health factors considered in these four case studies, this study found that a majority of participants equally valued emotional health, social health and physical health. A majority of participants declared a preference for workplace environments with serene natural environments with outdoor spaces and interaction with other species, work environments with body-conscious furniture, equipment and workstations, as well as exercise space and equipment. As these particular workplace environments affirmed value for elements of the factors biophilia, ergonomics and exercise, all three factors are considered valueable within the workplaces of these case studies. Furthermore, factors that were said to contribute to personal productivity in participating workplaces were found as well as sacrifices that participants stated they would be willing to make in order to implement their preferred work environment(s). In addition, this study recorded and calculated average miles walked by participants in each workplace as well as existing incentives and descriptions of ideal work environments. Implications of this research study involve interior design, industrial design and fashion design that can accommodate the desires of the four participating workplaces. Major design implications involve accommodating these particular workplaces to provide personnel with opportunities for holistic health in working environments. More specific implications of office related design involve providing access to natural environments, body-conscious equipment and spaces, as well as opportunities for exercise and social interaction. These elements of the factors biophilia, ergonomics and exercise were found to be said to contribute to cognitive, social and physical health.
ContributorsMcEwan, April (Author) / White, Philip (Thesis advisor) / Shraiky, James (Committee member) / Barry, Rebecca (Committee member) / Arizona State University (Publisher)
Created2011
149726-Thumbnail Image.png
Description
In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of

In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of landfill real estate and other considerable ecological impacts created by the manufacturing of furniture should persuade people to give their belongings a longer life, but in reality, furniture is often prematurely discarded. This grounded theory study takes a multi-method approach to analyze why some types of furniture are kept longer and to theorize about new ways to design and sell furniture that lasts well past its warranty. Case studies bring new insight into designer intention, manufacturer intent, the world of auction-worthy collectables and heirlooms, why there is a booming second-hand furniture market and the growing importance of informed interior designers and architects who specify or help clients choose interior furnishings. An environmental life cycle assessment compares how the length of furniture life affects environmental impacts. A product's life could continue for generations if properly maintained. Designers and manufacturers hoping to promote longevity can apply the conclusions of this report in bringing new pieces to the market that have a much longer life span. This study finds areas of opportunity that promote user attachment, anticipate future repurposing, and provide services. This thinking envisions a paradigm for furniture that can re-invent itself over multiple generations of users, and ultimately lead to a new wave of desirable heirloom furniture.
ContributorsIngham, Sarah (Author) / White, Philip (Thesis advisor) / Wolf, Peter (Committee member) / Underhill, Michael (Committee member) / Arizona State University (Publisher)
Created2011