Matching Items (1,121)
Filtering by

Clear all filters

151323-Thumbnail Image.png
Description
This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.
ContributorsRedd, Thomas Christopher (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Darnall, Nicole (Committee member) / Arizona State University (Publisher)
Created2012
151601-Thumbnail Image.png
Description
The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.
ContributorsWiehn, Michael (Author) / Nielsen, David (Thesis advisor) / Lin, Jerry (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2013
152520-Thumbnail Image.png
Description
High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for

High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for ceramic-carbonate dual-phase membrane is rate limited by ion transport in ceramic support. Reducing membrane thickness proves effective to improve permeation flux. This dissertation reports strategy to prepare thin ceramic-carbonate dual-phase membranes to increase CO2 permeance. The work also presents characteristics and gas permeation properties of the membranes. Thin ceramic-carbonate dual-phase membrane was constructed with an asymmetric porous support consisting of a thin small-pore ionic conducting ceramic top-layer and a large pore base support. The base support must be carbonate non-wettable to ensure formation of supported dense, thin membrane. Macroporous yttria-stabilized zirconia (YSZ) layer was prepared on large pore Bi1.5Y0.3Sm0.2O3-δ (BYS) base support using suspension coating method. Thin YSZ-carbonate dual-phase membrane (d-YSZ/BYS) was prepared via direct infiltrating Li/Na/K carbonate mixtures into top YSZ layers. The thin membrane of 10 μm thick offered a CO2 flux 5-10 times higher than the thick dual-phase membranes. Ce0.8Sm0.2O1.9 (SDC) exhibited highest CO2 flux and long-term stability and was chosen as ceramic support for membrane performance improvement. Porous SDC layers were co-pressed on base supports using SDC and BYS powder mixtures which provided better sintering comparability and carbonate non-wettability. Thin SDC-carbonate dual-phase membrane (d-SDC/SDC60BYS40) of 150 μm thick was synthesized on SDC60BYS40. CO2 permeation flux for d-SDC/SDC60BYS40 exhibited increasing dependence on temperature and partial pressure gradient. The flux was higher than other SDC-based dual-phase membranes. Reducing membrane thickness proves effective to increase CO2 permeation flux for the dual-phase membrane.
ContributorsLu, Bo (Author) / Lin, Yuesheng (Thesis advisor) / Crozier, Peter (Committee member) / Herrmann, Macus (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014
152810-Thumbnail Image.png
Description
Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible

Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible approaches to design and sustainability were analyzed using content analysis techniques. The results show several recommendations to minimize product impacts through design, and dimensions to which they belong. Two products made by a manufacturing firm with exceptional commitment to environmental responsibility were studied to understand how design approaches and assessment methods were used in their development. The results showed that the company used several strategies for environmentally responsible design as well as assessment methods in product and process machine design, both of which resulted in reduced environmental impacts of their products. Factors that contributed positively to reduce impacts are the use of measurement systems alongside environmentally responsible design, as well as inspiring innovations by observing how natural systems work. From a managerial perspective, positive influencing factors included a commitment to environmental responsibility from the executive level of the company and a clear vision about sustainability that has been instilled from the top through every level of employees. Additionally, a high degree of collaboration between the company and its suppliers and customers was instrumental in making the success possible.
ContributorsHuerta Gajardo, Oscar André (Author) / Giard, Jacques (Thesis advisor) / White, Philip (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152925-Thumbnail Image.png
Description
Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not

Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not biodegrade and are lost rather than recycled. This study analyzes a system that attempts to solve the electronic post-consumer-waste problem by shifting the economic burden of disposal from local municipalities to producers, reducing its environmental impacts while promoting economic development. The system was created in British Columbia, Canada after the province enacted a recycling regulation based on Extended Producer Responsibility (EPR), a policy strategy that is fast growing globally. The BC recycling regulation requires all e-toy corporations in BC to comply with a government-approved product-stewardship program to recover and dispose of e-toys after they have been discarded by consumers. In response to the regulation, e-toy corporations joined a Canadian non-profit entity that recycles regulated waste. I conducted a case study using in-depth interviews with the stakeholders to identify the outcomes of this program and its potential for replication in other industries. I derived lessons from which corporations can learn to implement stewardship programs based on EPR regulations. The e-toy program demonstrated that creating exclusive programs is neither efficient nor economically feasible. Corporations should expect low recycling rates in the first phases of the program implementation because EPR regulations are long-term strategies. In order to reach any conclusions about the demand of consumers for recycling programs, we need to measure the program's return rates during at least three years. I also derived lessons that apply to the expansion of EPR regulations to a broader scope of product categories. The optimal way to expand EPR policy is to do it by gradually adding new product categories to the regulation on a long-term schedule. By doing so, new categories can take advantage of existing stewardship programs and their infrastructure to recover and recycle the post-consumer products. EPR proved to be an effective option to make corporations start thinking about the end of life of their products.
ContributorsNemer Soto, Andrea (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2014
152838-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread

Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread application. To overcome this, researchers have recently created probabilistic underspecification as an LCA streamlining method, which uses a structured data classification system to enable an LCA modeler to specify materials and processes in a less precise manner. This study presents a statistical procedure to understand when streamlined LCA methods can be used, and what their impact on overall model uncertainty is. Petrochemicals and polymer product systems were chosen to examine the impacts of underspecification and mis-specification applied to LCA modeling. Ecoinvent database, extracted using GaBi software, was used for data pertaining to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results arising out of streamlined materials classification, the developed statistics estimate the amount of overall error incurred by underspecifying and mis-specifying material impact data in streamlined LCA. To test the impact of underspecification and mis-specification at the level of a product footprint, case studies of HDPE containers and aerosol air fresheners were conducted. Results indicate that the variation in LCA results decreases as the specificity of materials increases. For the product systems examined, results show that most of the variability in impact assessment is due to the differences in the regions from which the environmental impact datasets were collected; the lower levels of categorization of materials have relatively smaller influence on the variance. Analyses further signify that only certain environmental impact categories viz. global warming potential, freshwater eutrophication, freshwater ecotoxicity, human toxicity and terrestrial ecotoxicity are affected by geographic variations. Outcomes for the case studies point out that the error in the estimation of global warming potential increases as the specificity of a component of the product decreases. Fossil depletion impact estimates remain relatively robust to underspecification. Further, the results of LCA are much more sensitive to underspecification of materials and processes than mis-specification.
ContributorsMurali, Ashwin Krishna (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
153438-Thumbnail Image.png
Description
Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms.

As a first step in developing a fundamental understanding of the cavitation erosion process on polymer surfaces, simulations are performed of the collapse of individual bubbles against a compliant surface e.g. metallic substrates with polyurea coatings. The surface response of collapse-driven impact loads is represented by a idealized, time-dependent, Gaussian pressure distribution on the surface. A two-dimensional distribution of load radii and durations is considered corresponding to characteristic of cavitating flows accelerated erosion experiments. Finite element simulations are performed to fit a response curve that relates the loading parameters to the energy dissipated in the coating and integrated with collapse statistics to generate an expected heat input into the coating.

The impulsive pressure, which is generated due to bubble collapse, impacts the material and generates intense shock waves. The stress waves within the material reflects by interaction with the substrate. A transient region of high tensile stress is produced by the interaction of these waves. Simulations suggests that maximum hydrostatic tension which cause failure of polyurea layer is observed in thick coating. Also, the dissipated viscous energy and corresponding temperature rise in a polyurea is calculated, and it is concluded that temperature has influence on deformation.
ContributorsPanwar, Ajay (Author) / Oswald, Jay (Thesis advisor) / Dooley, Kevin (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
153013-Thumbnail Image.png
Description
Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be

Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be the material considered in this thesis. A simple mathematical model has been developed to demonstrate the inter-relationships between relative permeation flux, reduced selectivity, and the relative resistance to mass transfer of the support to the zeolite layer. The model was applied to several membranes from our laboratory and to two examples from the literature. The model offers a useful way of conceptualizing membrane performance and facilitates the comparison of different membrane performances. The model predicts the effect of different supports on zeolite supported membrane performance.
ContributorsMann, Stewart (Author) / Lin, Jerry (Thesis advisor) / Lind, Mary Laura (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
153197-Thumbnail Image.png
Description
The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been

The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been conducted on comparative Life Cycle Assessment (LCA) of the application of these nano-TiO2 particles in the sunscreen lotion as a UV-blocker with the conventional organic chemical sunscreen lotion using GaBi software. Nano-TiO2 particles were identified in the sunscreen lotion using Transmission Electron Microscope suggesting the use of these particles in the lotion.

The LCA modeling includes the comparison of the environmental impacts of producing nano-TiO2 particles with that of conventional organic chemical UV-blockers (octocrylene and avobenzone). It also compares the environmental life cycle impacts of the two sunscreen lotions studied. TRACI 2.1 was used for the assessment of the impacts which were then normalized and weighted for the ranking of the impact categories.

Results indicate that nano-TiO2 had higher impacts on the environment than the conventional organic chemical UV-blockers (octocrylene and avobenzone). For the two sunscreen lotions studied, nano-TiO2 sunscreen variant had lower environmental life cycle impacts than its counterpart because of the other chemicals used in the formulation. In the organic chemical sunscreen variant the major impacts came from production of glycerine, ethanol, and avobenzone but in the nano-TiO2 sunscreen variant the major impacts came from the production of nano-TiO2 particles.

Analysis further signifies the trade-offs between few environmental impact categories, for example, the human toxicity impacts were more in the nano-TiO2 sunscreen variant, but the other environmental impact categories viz. fossil fuel depletion, global warming potential, eutrophication were less compared to the organic chemical sunscreen variant.
ContributorsThakur, Ankita (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014