Matching Items (137)
Filtering by

Clear all filters

Description
Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which

Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which is a model used in the Mechanistic-Empirical Pavement Design Guide to estimate the soil long-term equilibrium resilient modulus. The stochastic evaluation is accomplished by taking the deterministic equations in the EICM and applying stochastic procedures to obtain a mean and variance associated with the final design parameter, the resilient modulus at equilibrium condition. In addition to the stochastic evaluation, different statistical analyses were applied to determine that the uses of hierarchical levels are valid in the unbound pavement material design and the climatic region has an impact on the final design resilient moduli at equilibrium. After determining that the climatic regions and the hierarchical levels are valid, reliability was applied to the resilient moduli at equilibrium. Finally, the American Association of State Highway and Transportation Officials (AASHTO) design concept based on the Structural Number (SN) was applied in order to illustrate the true implications the hierarchical levels of design and the variability associated with environmental effects and soil properties have in the design of pavement structures. The stochastic solutions developed as part of this thesis work together with the SN design concept were applied to five soils with different resilient moduli at optimum compaction condition in order to evaluate the variability associated with the resilient moduli at equilibrium condition. These soils were evaluated in five different climatic regions ranging from arid to extremely wet conditions. The analysis showed that by using the most accurate input parameters obtained from laboratory testing (hierarchical Level 1) instead of Level 3 analysis could potentially save the State Department of Transportation up to 10.12 inches of asphalt in arid and semi-arid regions.
ContributorsRosenbalm, Daniel (Author) / Zapata, Claudia (Thesis advisor) / Witczak, Matthew (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2011
150721-Thumbnail Image.png
Description

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms of life extension, relative benefit, and benefit-cost ratio. Optimal timing of pavement preservation means that the given maintenance treatment is applied so that it will extend the life of the roadway for the longest possible period with the minimum cost. This document examines the effectiveness of chip seal treatment in four climatic zones in the United States. The Long-Term Pavement Performance database was used to extract roughness and traffic data, as well as the maintenance and rehabilitation histories of treated and untreated sections. The sections were categorized into smooth, medium, and rough pavements, based upon initial condition as indicated by the International Roughness Index. Pavement performance of treated and untreated sections was collectively modeled using exponential regression analysis. Effectiveness was evaluated in terms of life extension, relative benefit, and benefit-cost ratio. The results of the study verified the assumption that treated sections performed better than untreated sections. The results also showed that the life extension, relative benefit, and benefit cost ratio are highest for sections whose initial condition is smooth at the time of chip seal treatment. These same measures of effectiveness are lowest for pavements whose condition is rough at the time of treatment. Chip seal treatment effectiveness showed no correlation to climatic conditions or to traffic levels.

ContributorsDosa, Matild (Author) / Mamlouk, Michael S. (Thesis advisor) / Kaloush, Kamil (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2012
150708-Thumbnail Image.png
Description
This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of

This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of the current implementation at the Southern Nevada Health District (SNHD). The result of the system deployment at SNHD was considered as a basis for projecting the practical application and benefits of an enterprise architecture. This approach has resulted in a sustainable platform to enhance the practice of public health by improving the quality and timeliness of data, effectiveness of an investigation, and reporting across the continuum.
ContributorsKriseman, Jeffrey Michael (Author) / Dinu, Valentin (Thesis advisor) / Greenes, Robert (Committee member) / Johnson, William (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012
136333-Thumbnail Image.png
Description
Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall albedo, ground albedo, a combination of all three albedos, roof emissivity, wall emissivity, ground emissivity, a combination of all three emissivities, and normalized building height as independent variables. Dependent variables included canyon air temperature, effective ground temperature, effective roof temperature, effective wall temperature, and sensible heat flux. It was found that emissivity does play a part in reducing the different dependent variables; however, typically emissivity values are already within a preferred range that not much can be done with them. Normalized building height has a minor impact but the impact that it does have upon the different variables is lessened with lower values of the normalized building height. Increasing the wall albedo decreased the canyon air temperature and the effective wall temperature the most compared to the other variables when considering expenses. An increase in roof albedo reduced effective roof temperature and sensible heat flux the most when taking into consideration the cost of changing the albedo of the surface. Larger values of ground albedo helped to reduce the effective ground temperature more than the other variables considered when a budget is necessary.
ContributorsHousenga, Hannah Eileen (Author) / Kaloush, Kamil (Thesis director) / Wang, Zhihua (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
135953-Thumbnail Image.png
Description
In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity,

In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity, and thermal diffusivity. Density was shown to increase with increasing copper slag content, increasing an average of 2298 kg/m^3, 2522 kg/m^3, and 2652 kg/m^3 in the 25%, 50%, and 100% mixes. This represents a 15% increase in density from 0% to 100%. Compressive strength testing indicated that the presence of copper slag in concrete provides no definitive strength benefit over Salt River aggregate. This result was expected, as concrete's strength is primarily derived from the cement matrix and not the aggregate. Thermal conductivity showed a decreasing trend with increasing copper slag content. Th control mix had an average conductivity of 0.660 W/m*K, and the 25%, 50%, and 100% mixes had conductivities of 0.649 W/m*K, 0.647 W/m*K, and 0.519 W/m*K, respectively. This represents 21% drop in thermal conductivity over the control. This result was also expected, as materials formed at higher temperatures, like copper slag, tend to have lower thermal conductivities. Specific heat capacity testing yielded results that were statistically indeterminate, though unlike strength testing this arose from inaccurate assumptions made during testing. This also prevented accurate thermal diffusivity results, as diffusivity is a function of density, thermal conductivity, and specific heat capacity. However, given the trends of the first two parameters, it is plausible to say that diffusivity in copper slag concrete would be lower than that of the control ix. All of these results were plugged into ASU's Pavement Temperature Model to see what effect they had in mitigating the UHI effect.
ContributorsLaughlin, Colin (Author) / Kaloush, Kamil (Thesis director) / Phelan, Patrick (Committee member) / Witczak, Kenneth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
149357-Thumbnail Image.png
Description
This project is a critical look at Chicano artist Vincent Valdez's 2002-2004 series Stations. The theoretical framework for this work is the concept of cultural citizenship, which refers to a variety of ways in which marginalized groups of people create, fight for, and retain space, identity, and rights within American

This project is a critical look at Chicano artist Vincent Valdez's 2002-2004 series Stations. The theoretical framework for this work is the concept of cultural citizenship, which refers to a variety of ways in which marginalized groups of people create, fight for, and retain space, identity, and rights within American society through acts of daily life. This research considers how the ten large-scale charcoal drawings that comprise Stations contribute to the construction and representation of distinct and unique Latino spaces and identities. Valdez establishes space in the sense of belonging and community engagement that his work allows. Within this context, thoughtful attention is paid to the cultural meaning of the artist's subject choices of boxing and religion. This research considers the significance of these subject choices and how the connections between the two create unique spaces of shared experience and consciousness for a viewer of the work. However, the parallels that Valdez draws between the Christ figure and his boxer also allow for a careful examination of the representations and contradictions of contemporary constructions of masculinity that are present in the series. Within this project, the work of Gloria Anzaldúa is critical in understanding and discussing the fluid nature of Chicano identity. This study also considers how in the tradition of Chicana writers, Valdez expresses and affirms identity through autobiographical methods. Further, the artist's use of charcoal to create these large scale drawings is considered for its narrative qualities. This study concludes that Valdez's series Stations is an act of cultural citizenship.
ContributorsStemm Patel, Shannon (Author) / Malagamba-Ansótegui, Amelia (Thesis advisor) / Mesch, Claudia (Committee member) / Sweeney, Gray (Committee member) / Arizona State University (Publisher)
Created2010