Matching Items (24)
130226-Thumbnail Image.png
ContributorsDing, Ding (Author) / Johnson, Shane R. (Author) / Yu, S.-Q. (Author) / Wu, S.-N. (Author) / Zhang, Yong-Hang (Author)
Created2011
128067-Thumbnail Image.png
Description

InGaN semiconductors are promising candidates for high-efficiency next-generation thin film solar cells. In this work, we study the photovoltaic performance of single-junction and two-junction InGaN solar cells using a semi-analytical model. We analyze the major loss mechanisms in InGaN solar cell including transmission loss, thermalization loss, spatial relaxation loss, and

InGaN semiconductors are promising candidates for high-efficiency next-generation thin film solar cells. In this work, we study the photovoltaic performance of single-junction and two-junction InGaN solar cells using a semi-analytical model. We analyze the major loss mechanisms in InGaN solar cell including transmission loss, thermalization loss, spatial relaxation loss, and recombination loss. We find that transmission loss plays a major role for InGaN solar cells due to the large bandgaps of III-nitride materials. Among the recombination losses, Shockley-Read-Hall recombination loss is the dominant process. Compared to other III-V photovoltaic materials, we discovered that the emittance of InGaN solar cells is strongly impacted by Urbach tail energy. For two- and multi-junction InGaN solar cells, we discover that the current matching condition results in a limited range of top-junction bandgaps. This theoretical work provides detailed guidance for the design of high-performance InGaN solar cells.

ContributorsHuang, Xuangqi (Author) / Fu, Houqiang (Author) / Chen, Hong (Author) / Lu, Zhijian (Author) / Ding, Ding (Author) / Zhao, Yuji (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-01