Matching Items (392)
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
148116-Thumbnail Image.png
Description

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further research is needed to find out whether humans can learn to perceive emotions only from contextual explanations.

ContributorsCulbert, Bailie (Author) / Hartwell, Leland (Thesis director) / McAvoy, Mary (Committee member) / School of Life Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147847-Thumbnail Image.png
Description

The Constitution is a document that was made over 200 years ago by a population that could have never imagined the type of technology or social advances made in the 21st century. This creates a natural rift between governing ideals between then and now, that needs to be addressed. Rather

The Constitution is a document that was made over 200 years ago by a population that could have never imagined the type of technology or social advances made in the 21st century. This creates a natural rift between governing ideals between then and now, that needs to be addressed. Rather than holding the values of the nation to a time when people were not considered citizens because of the color of their skin, there need to be updates made to the Constitution itself. The need for change and the mechanisms were both established by the Framers while creating and advancing the Constitution. The ideal process to go about these changes is split between the formal Article V amendment process and judicial activism. The amendment process has infinite scope for changes that can be done, but due to the challenge involved in trying to pass any form of the amendment through both State and Federal Congresses, that process should be reserved for only fundamental or structural changes. Judicial activism, by way of Supreme Court decisions, is a method best applied to the protection of people’s rights.

Created2021-05
Description

The Arizona Civic Education Project is a cross-college collaboration supported by the Maricopa County Community College District to design, develop, and distribute publicly available, interactive, and engaging multimedia modules about Arizona State Government and the justice system. The modules aim to consist of high quality, professionally produced, value- neutral, fact-based,

The Arizona Civic Education Project is a cross-college collaboration supported by the Maricopa County Community College District to design, develop, and distribute publicly available, interactive, and engaging multimedia modules about Arizona State Government and the justice system. The modules aim to consist of high quality, professionally produced, value- neutral, fact-based, and bias-free videos, lesson plans, printable materials and activities that explain how Arizona state government is structured and how the justice system works in Arizona. The modules also identify and teach the audience how to deal with encounters within the justice system through lessons about the courts and dealing with the police. In addition to the resources we create, links are provided with attribution to other free resources that have been developed by other organizations. The targeted audience for this project is high school and college students attending public high schools and community colleges. In 2015, Arizona legislature passed the American Civics Act (House Bill 2064). This bill requires students to pass a civics test based on the United States Immigration and Naturalization civics questions. Students are required to score 60% or higher in order to graduate from high school or obtain a high school equivalency certificate. The Arizona Department of Education along with help from the Maricopa County Education Service Agency and Arizona educators have developed a mostly multiple-choice version of the required test. The modules provide helpful information that pertains to the civic test along with additional informational useful to students and educators alike.<br/>There were a few goals kept in mind when assembling the modules and collecting information to put them together. The most important thing is to fairly and effectively educate<br/>2<br/>students about their rights and the place they can hold in their own government. The youth in America, and specifically Arizona, with one of the lowest rated public education systems in the country1, needs to better understand the justice system and the way it works in order to really be able to better understand and decide the role they play in it as they grow into the adult population. We also aimed to teach students, mostly young adults, how to navigate being involved with the law and situations they may find themselves in like being arrested or having to go to court. The videos included in the related modules teach students what to do if they’re ever arrested and go over important legal actions that could affect their outcome. It was also important to provide instructors with a fair and trusted curriculum that can be taught across the state. With a shortage of qualified teacher in the state, it is impossible to provide students from all different districts and background with the same content. With the mandated civics test required to graduate from high school, it’s important that students get a fair chance at passing despite their living conditions or resources. With the modules we provide, passing the civics test along with managing other issues that pertain to young Americans, become attainable and don’t require as much additional time spent outside of school hours. The additional topics covered within our modules also provide information regarding resources that students will find useful for their families and loved ones. Students in compromised neighborhoods may have family and loved ones dealing with court cases and the justice system. Overall, we wanted to provide an unbiased, all-inclusive curriculum that can be used across the state to help students learn about all aspects of the government in Arizona.

ContributorsLabiba, Syeda (Author) / Broberg, Gregory (Thesis director) / Dille, Brian (Committee member) / School of Social Transformation (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148206-Thumbnail Image.png
Description

Empathy includes multiple components, including empathic concern, perspective-taking, and motivation to empathize. Various perspective-taking interventions have been found to be useful in increasing empathy. Games can be utilized as such interventions, especially when they involve perspective-taking components. The similarities between tabletop roleplaying games and various empathy-building interventions suggests that tableto

Empathy includes multiple components, including empathic concern, perspective-taking, and motivation to empathize. Various perspective-taking interventions have been found to be useful in increasing empathy. Games can be utilized as such interventions, especially when they involve perspective-taking components. The similarities between tabletop roleplaying games and various empathy-building interventions suggests that tabletop roleplaying games may be an intervention option that is already played for enjoyment. This study examines the influence of tabletop roleplaying games on motivation to empathize. Participants played a short tabletop roleplaying game and then were asked to choose between describing and empathizing with refugee targets over a series of trials. There is a potential main effect of tabletop roleplaying games on motivation to empathize, but this main effect is absent when controlling for self-other-overlap. It appears that self-other-overlap influences motivation to empathize. However, this study was underpowered, and the main effect of roleplay may have been detected if more participants were involved. Thus, there is potential that tabletop roleplaying games may influence motivation to empathize, and future research should examine this while considering the limitations of this study.

ContributorsDraper, Kali Anne (Author) / Aktipis, Athena (Thesis director) / Guevara Beltran, Diego (Committee member) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011
150297-Thumbnail Image.png
Description
Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of gri

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.
ContributorsCooperhouse, Michael A (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013