Matching Items (1,040)
Filtering by

Clear all filters

149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149780-Thumbnail Image.png
Description
The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices,

The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices, including the iPhone, iPod touch and the latest in the family - the iPad, are among the well-known and widely used mobile devices today. Their advanced multi-touch interface and improved processing power can be exploited for engineering and STEM demonstrations. Moreover, these devices have become a part of everyday student life. Hence, the design of exciting mobile applications and software represents a great opportunity to build student interest and enthusiasm in science and engineering. This thesis presents the design and implementation of a portable interactive signal processing simulation software on the iOS platform. The iOS-based object-oriented application is called i-JDSP and is based on the award winning Java-DSP concept. It is implemented in Objective-C and C as a native Cocoa Touch application that can be run on any iOS device. i-JDSP offers basic signal processing simulation functions such as Fast Fourier Transform, filtering, spectral analysis on a compact and convenient graphical user interface and provides a very compelling multi-touch programming experience. Built-in modules also demonstrate concepts such as the Pole-Zero Placement. i-JDSP also incorporates sound capture and playback options that can be used in near real-time analysis of speech and audio signals. All simulations can be visually established by forming interactive block diagrams through multi-touch and drag-and-drop. Computations are performed on the mobile device when necessary, making the block diagram execution fast. Furthermore, the extensive support for user interactivity provides scope for improved learning. The results of i-JDSP assessment among senior undergraduate and first year graduate students revealed that the software created a significant positive impact and increased the students' interest and motivation and in understanding basic DSP concepts.
ContributorsLiu, Jinru (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Qian, Gang (Committee member) / Arizona State University (Publisher)
Created2011
150380-Thumbnail Image.png
Description
Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.
ContributorsBuddha, Santoshi Tejasri (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate and to help bring safe water to everyone.

ContributorsReitzel, Gage Alexander (Co-author) / Filipek, Marina (Co-author) / Sadiasa, Aira (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Human Evolution & Social Change (Contributor, Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

ContributorsPuffer, Georgie Delilah (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Gerkin, Richard (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148115-Thumbnail Image.png
Description

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids,

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids, children will show higher rates of exploration during free play.

ContributorsMccollum, Shani Monifa (Author) / Lucca, Kelsey (Thesis director) / Spinrad, Tracy (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147845-Thumbnail Image.png
Description

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences from typical ToM. The HyperToM test will be administered as an online questionnaire that includes a self-reported Autism Quotient (AQ) section. The study is done in low support needs autistic (LSA) adults, which should have a developed ToM due to age and ability. Results showed some correlations with the AQ symptoms and HyperToM, but not enough diagnosed autistic people (9) participated in this study for significant results.

ContributorsMarkov, Vlada A (Author) / Fabricius, William (Thesis director) / Philips, Ben (Committee member) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147849-Thumbnail Image.png
Description

Appearance ideals are standards of beauty imposed by a culture or society, that are unrealistic and impossible to achieve. Research documents the existence of three appearance ideals, thin, muscular and hourglass ideals. The thin ideal is the pursuit of a very thin and low body weight. The muscular ideal is

Appearance ideals are standards of beauty imposed by a culture or society, that are unrealistic and impossible to achieve. Research documents the existence of three appearance ideals, thin, muscular and hourglass ideals. The thin ideal is the pursuit of a very thin and low body weight. The muscular ideal is the pursuit of a toned and fit body. The hourglass ideal is the pursuit of a shapely body with bigger breasts and hips/buttocks than waist. These ideals are associated with disordered eating. However, no current study has examined the prevalence of all three ideals, or how the combination of ideals relates to dietary restraint, one example of a disordered eating behavior. This study was conducted on 505 undergraduate women at Arizona State University, who were completing research credit for a psychology course. The women participated in an online survey that assessed their demographics, each ideal, and dietary restraint. Results show that all combinations of ideals exist. Specifically, 41.5% of the sample endorse high levels of all three ideals, while 12.5% report thin and muscular ideals, 9.5% report thin and hourglass ideals, 9.9% report hourglass and muscular ideals, 8.4% report low levels of all three ideals, 6.4% report muscular ideal only, 6.4% report hourglass ideal only, and 5.6% report thin ideal only. Endorsing more than one ideal significantly associated with dietary restraint. Findings fulfill an important gap in the literature, suggest future directions for research, and have important clinical implications.

ContributorsByrd, Jordyn (Author) / Perez, Marisol (Thesis director) / Hernández, Juan (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147869-Thumbnail Image.png
Description

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare Disorder of Sexual Development (DSD) that results in the lack of a uterus and vagina in women. Receiving this diagnosis during adolescence can cause various forms of psychological distress in patients and families.<br/>Specifically, this condition could affect a women’s gender identity, body image, romantic relationships,

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare Disorder of Sexual Development (DSD) that results in the lack of a uterus and vagina in women. Receiving this diagnosis during adolescence can cause various forms of psychological distress in patients and families.<br/>Specifically, this condition could affect a women’s gender identity, body image, romantic relationships, family relationships, and psychological wellbeing. Parents are also put in a stressful<br/>position as they now have to navigate the healthcare system, disclosure, and the relationship with their child. This study aims to expand the knowledge of psychosocial adjustment by studying body<br/>image, gender identity, and mental health in individuals living with MRKH as well as parental disclosure, parental support systems, and parental perceptions of their child’s mental health.

ContributorsLaloudakis, Vasiliki (Author) / Wilson, Melissa (Thesis director) / Fontinha de Alcantara, Christiane (Committee member) / Baimbridge, Erica (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05