Matching Items (988)
Filtering by

Clear all filters

149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
150417-Thumbnail Image.png
Description
The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried out on the minimum aspect ratio (i.e. gate length to gate-to-channel-distance ratio) that limits short channel effects in ultra-scaled GaN and InP HEMTs, indicating that this value in GaN devices is 15 while in InP devices is 7.5. This difference is believed to be related to the different dielectric properties of the two materials, and the corresponding different electric field distributions. The dielectric effects of the passivation layer in millimeter-wave, high-power GaN HEMTs are also investigated, finding that the effective gate length is increased by fringing capacitances, enhanced by the dielectrics in regions adjacent to the gate for layers thicker than 5 nm, strongly affecting the frequency performance of deep sub-micron devices. Lastly, efficient Full Band Monte Carlo particle-based device simulations of the large-signal performance of mm-wave transistor power amplifiers with high-Q matching networks are reported for the first time. In particular, a CellularMonte Carlo (CMC) code is self-consistently coupled with a Harmonic Balance (HB) frequency domain circuit solver. Due to the iterative nature of the HB algorithm, this simulation approach is possible only due to the computational efficiency of the CMC, which uses pre-computed scattering tables. On the other hand, HB allows the direct simulation of the steady-state behavior of circuits with long transient time. This work provides an accurate and efficient tool for the device early-stage design, which allows a computerbased performance evaluation in lieu of the extremely time-consuming and expensive iterations of prototyping and experimental large-signal characterization.
ContributorsGuerra, Diego (Author) / Saraniti, Marco (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2011
148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

ContributorsPuffer, Georgie Delilah (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Gerkin, Richard (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148115-Thumbnail Image.png
Description

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids,

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids, children will show higher rates of exploration during free play.

ContributorsMccollum, Shani Monifa (Author) / Lucca, Kelsey (Thesis director) / Spinrad, Tracy (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147845-Thumbnail Image.png
Description

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences from typical ToM. The HyperToM test will be administered as an online questionnaire that includes a self-reported Autism Quotient (AQ) section. The study is done in low support needs autistic (LSA) adults, which should have a developed ToM due to age and ability. Results showed some correlations with the AQ symptoms and HyperToM, but not enough diagnosed autistic people (9) participated in this study for significant results.

ContributorsMarkov, Vlada A (Author) / Fabricius, William (Thesis director) / Philips, Ben (Committee member) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147849-Thumbnail Image.png
Description

Appearance ideals are standards of beauty imposed by a culture or society, that are unrealistic and impossible to achieve. Research documents the existence of three appearance ideals, thin, muscular and hourglass ideals. The thin ideal is the pursuit of a very thin and low body weight. The muscular ideal is

Appearance ideals are standards of beauty imposed by a culture or society, that are unrealistic and impossible to achieve. Research documents the existence of three appearance ideals, thin, muscular and hourglass ideals. The thin ideal is the pursuit of a very thin and low body weight. The muscular ideal is the pursuit of a toned and fit body. The hourglass ideal is the pursuit of a shapely body with bigger breasts and hips/buttocks than waist. These ideals are associated with disordered eating. However, no current study has examined the prevalence of all three ideals, or how the combination of ideals relates to dietary restraint, one example of a disordered eating behavior. This study was conducted on 505 undergraduate women at Arizona State University, who were completing research credit for a psychology course. The women participated in an online survey that assessed their demographics, each ideal, and dietary restraint. Results show that all combinations of ideals exist. Specifically, 41.5% of the sample endorse high levels of all three ideals, while 12.5% report thin and muscular ideals, 9.5% report thin and hourglass ideals, 9.9% report hourglass and muscular ideals, 8.4% report low levels of all three ideals, 6.4% report muscular ideal only, 6.4% report hourglass ideal only, and 5.6% report thin ideal only. Endorsing more than one ideal significantly associated with dietary restraint. Findings fulfill an important gap in the literature, suggest future directions for research, and have important clinical implications.

ContributorsByrd, Jordyn (Author) / Perez, Marisol (Thesis director) / Hernández, Juan (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147869-Thumbnail Image.png
Description

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare Disorder of Sexual Development (DSD) that results in the lack of a uterus and vagina in women. Receiving this diagnosis during adolescence can cause various forms of psychological distress in patients and families.<br/>Specifically, this condition could affect a women’s gender identity, body image, romantic relationships,

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare Disorder of Sexual Development (DSD) that results in the lack of a uterus and vagina in women. Receiving this diagnosis during adolescence can cause various forms of psychological distress in patients and families.<br/>Specifically, this condition could affect a women’s gender identity, body image, romantic relationships, family relationships, and psychological wellbeing. Parents are also put in a stressful<br/>position as they now have to navigate the healthcare system, disclosure, and the relationship with their child. This study aims to expand the knowledge of psychosocial adjustment by studying body<br/>image, gender identity, and mental health in individuals living with MRKH as well as parental disclosure, parental support systems, and parental perceptions of their child’s mental health.

ContributorsLaloudakis, Vasiliki (Author) / Wilson, Melissa (Thesis director) / Fontinha de Alcantara, Christiane (Committee member) / Baimbridge, Erica (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148166-Thumbnail Image.png
Description

This study tested the effect of status threat on ingroup identification and examined identity concealability and stereotype endorsement as moderators of the relationship. Participants included a visible identity group (Asian men) and a concealable identity group (gay men). Participants were randomized into either a status threat condition, in which they

This study tested the effect of status threat on ingroup identification and examined identity concealability and stereotype endorsement as moderators of the relationship. Participants included a visible identity group (Asian men) and a concealable identity group (gay men). Participants were randomized into either a status threat condition, in which they read a vignette that reminded them of a negative stereotype about the target group and discussed positive stereotypes of the group as well, or a control condition that discussed positive stereotypes only. Participants then responded to a measure of ingroup identification and a measure of stereotype endorsement. A significant main effect of status threat on ingroup identification was found, such that participants in the status threat condition showed lower ingroup identification. The interaction of condition and concealability was not significant. The interaction of condition and stereotype endorsement was marginally significant, such that the main effect shows up stronger for those lower on stereotype endorsement. The main effect is interpreted as a potential protective strategy for self-esteem. The stereotype threat interaction is interpreted as a difference in the way that those who do and do not endorse the stereotype view the legitimacy of the status threat.

ContributorsWeathers, Shelby E (Author) / Shiota, Michelle (Thesis director) / Kenrick, Douglas (Committee member) / Wiezel, Adi (Committee member) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05