Matching Items (213)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
147857-Thumbnail Image.png
Description

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-đť›˝ glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-đť›˝ glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or other radicals, and deamination of cytosine to uracil.<br/>However, many cells possess the machinery to counteract the deleterious effects of<br/>such mutations. While eukaryotic DNA repair enzymes decrease the incidence of<br/>mutations from 1 mistake per 10^7 nucleotides to 1 mistake per 10^9 nucleotides, these<br/>mutations, however sparse, are problematic. Of particular interest is a mutation in which<br/>uracil is incorporated into DNA, either by spontaneous deamination of cysteine or<br/>misincorporation. Such mutations occur about one in every 107 cytidine residues in 24<br/>hours. DNA uracil glycosylase (UDG) recognizes these mutations and cleaves the<br/>glycosidic bond, creating an abasic site. However, the rate of this form of DNA repair<br/>varies, depending on the nucleotides that surround the uracil. Most enzyme-DNA<br/>interactions depend on the sequence of DNA (which may change the duplex twist),<br/>even if they only bind to the sugar-phosphate backbone. In the mechanism of uracil<br/>excision, UDG flips the uracil out of the DNA double helix, and this step may be<br/>impaired by base pairs that neighbor the uracil. The deformability of certain regions of<br/>DNA may facilitate this step in the mechanism, causing these regions to be less<br/>mutable. In DNA, base stacking, a form of van der Waals forces between the aromatic<br/>nucleic bases, may make these uracil inclusions more difficult to excise. These regions,<br/>stabilized by base stacking interactions, may be less susceptible to repair by<br/>glycosylases such as UDG, and thus, more prone to mutation.

ContributorsUgaz, Bryan T (Author) / Levitus, Marcia (Thesis director) / Van Horn, Wade (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148168-Thumbnail Image.png
Description

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.

ContributorsAsuncion, David Leonard Esquiera (Co-author) / Dubey, Shreya (Co-author) / Patterson, Lindsey (Thesis director) / Lee, Lindsay (Committee member) / Harrington Bioengineering Program (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147988-Thumbnail Image.png
Description

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some stardust grains likely condensed in classical nova outbursts (e.g., Amari et al. 2001). These nova candidate grains contain 13C, 15N and 17O-rich nuclides which are produced by proton burning. However, these nuclides alone cannot constrain the stellar source of nova candidate grains. Nova ejecta is rich in 7Be that decays to 7Li (which has a half-life of ~53 days). I want to measure 6,7Li isotopes in nova candidate grains using the NanoSIMS 50L (nanoscale secondary ion mass spectrometry) to establish their nova origins without ambiguity. Several stardust grains that are nova candidate grains were identified in meteorite Acfer 094 on the basis of their oxygen isotopes. The identified silicate and oxide stardust grains are <500 nm in size and exist in the meteorite surrounded by meteoritic silicates. Therefore, 6,7Li isotopic measurements on these grains are hindered because of the large 300-500 nm oxygen ion beam in the NanoSIMS. I devised a methodology to isolate stardust grains by performing Focused Ion Beam milling with the FIB – Nova 200 NanoLab (FEI) instrument. We proved that the current FIB instrument cannot be used to prepare stardust grains smaller than 1 𝜇m due to lacking capabilities of the FIB. For future analyses, we could either use the same milling technique with the new and improved FIB – Helios 5 UX or use the recently constructed duoplasmatron on the NanoSIMS that can achieve a size of ~75 nm oxygen ion beam.

ContributorsDuncan, Ethan Jay (Author) / Bose, Miatrayee (Thesis director) / Starrfield, Sumner (Committee member) / Desch, Steve (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147965-Thumbnail Image.png
Description

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via ketyl radical intermediates and hydrogen-bonding-facilitated redox attenuation. After an initial lipase screening of 9 lipases, one lipase (Candida rugosa) was found to perform the pinacol coupling of p-anisaldehyde under standard conditions (fluorescein and 530nm light, 3% yield). Based on a retrosynthetic analysis for the photocatalyst-incorporated HaloTag® linker, the intermediates haloamine 1 and aldehyde 6 were synthesized. Further experiments are underway or planned to complete linker synthesis and conduct pinacol coupling experiments with a bioconjugated system. This project underscores the promising biocatalytic promiscuity of lipases for performing reactions proceeding through ketyl radical intermediates, as well as the underdeveloped potential of incorporating bioengineering principles like bioconjugation into biocatalysis to overcome kinetic barriers to electron transfer and optimize biocatalytic reactions.

ContributorsMcrae, Kenna Christine (Author) / Biegasiewicz, Kyle (Thesis director) / Ghirlanda, Giovanna (Committee member) / Moore, Ana (Committee member) / Department of Physics (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148208-Thumbnail Image.png
Description

Treatment log files for spot scanning proton therapy provide a record of delivery accuracy, but they also contain diagnostic information for machine performance. A collection of patient log files can identify machine performance trends over time. This facilitates the identification of machine issues before they cause downtime or degrade treatment

Treatment log files for spot scanning proton therapy provide a record of delivery accuracy, but they also contain diagnostic information for machine performance. A collection of patient log files can identify machine performance trends over time. This facilitates the identification of machine issues before they cause downtime or degrade treatment quality. At Mayo Clinic Arizona, all patient treatment logs are stored in a database. These log files contain information including the gantry, beam position, monitor units (MUs), and gantry angle. This data was analyzed to identify trends, which were then correlated with quality assurance measurements and maintenance records.

ContributorsGrayson, Madison Emily (Author) / Alarcon, Ricardo (Thesis director) / Robertson, Daniel (Committee member) / Department of Physics (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013