Matching Items (190)
Description
This study examines the linkage between surface level ozone and planetary boundary layer meteorological variables in the Phoenix Metropolitan region during the summer North American Monsoon period for years 2010 through 2020. Data used in this study was obtained and derived from both 1200 UTC radiosonde observations launched from the

This study examines the linkage between surface level ozone and planetary boundary layer meteorological variables in the Phoenix Metropolitan region during the summer North American Monsoon period for years 2010 through 2020. Data used in this study was obtained and derived from both 1200 UTC radiosonde observations launched from the Phoenix National Weather Service office, and 8-hour average ozone concentration measurements from Maricopa County monitoring stations. Specific boundary layer meteorological variables examined in this study included inversion temperature, mixing level pressure, mixing level height, and the surface level variables of temperature, dew point temperature, pressure, wind speed, and meridional and zonal wind directions. The daily maximum, 8-hour average ozone concentrations among all Maricopa County monitoring stations were used in this study. To determine ozone’s linkage to meteorological variables, normality tests, determination of Pearson product moment correlation coefficient and/or the Spearman rank correlation coefficient, and the discriminative Student’s two-sided t-test statistic between ozone exceedance and non-exceedance days were used. Statistically significant coefficients indicate weak negative correlations between surface level ozone and surface level pressure, and mixing level pressure, and weak positive correlations between surface level ozone and surface level temperature, surface level zonal wind direction, mixing level height, and inversion temperature. These correlations were linear for surface level pressure, surface level temperature, and inversion temperature. The two-sided Student’s t-test statistic indicates a significant difference in the mean on ozone exceedance and non-exceedance days for surface level temperature, and the upper-air variables of mixing level height, mixing level pressure, and inversion temperature. Both correlations and differences in the mean of upper-air variables showed statistically significant results. These findings suggest that further research should be completed to determine the forecasting ability of morning sounding analyses on surface level ozone in locations exhibiting similar emissions and geographic features as the Phoenix Valley.
ContributorsLopez, David (Author) / Cerveny, Randall (Thesis director) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Physics (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05
Description

We implemented the well-known Ising model in one dimension as a computer program and simulated its behavior with four algorithms: (i) the seminal Metropolis algorithm; (ii) the microcanonical algorithm described by Creutz in 1983; (iii) a variation on Creutz’s time-reversible algorithm allowing for bonds between spins to change dynamically; and

We implemented the well-known Ising model in one dimension as a computer program and simulated its behavior with four algorithms: (i) the seminal Metropolis algorithm; (ii) the microcanonical algorithm described by Creutz in 1983; (iii) a variation on Creutz’s time-reversible algorithm allowing for bonds between spins to change dynamically; and (iv) a combination of the latter two algorithms in a manner reflecting the different timescales on which these two processes occur (“freezing” the bonds in place for part of the simulation). All variations on Creutz’s algorithm were symmetrical in time, and thus reversible. The first three algorithms all favored low-energy states of the spin lattice and generated the Boltzmann energy distribution after reaching thermal equilibrium, as expected, while the last algorithm broke from the Boltzmann distribution while the bonds were “frozen.” The interpretation of this result as a net increase to the system’s total entropy is consistent with the second law of thermodynamics, which leads to the relationship between maximum entropy and the Boltzmann distribution.

ContributorsLewis, Aiden (Author) / Chamberlin, Ralph (Thesis director) / Beckstein, Oliver (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
Description

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule is the most observed fragmentation pathway arising from the excitation

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule is the most observed fragmentation pathway arising from the excitation of the ground state parent molecule to a dissociative A state using two 400 nm, 3.1 eV pump photons. The dissociation energy of this pathway is 2.91 eV, leaving 3.3 eV of energy that is redistributed into the product fragments as vibrational energy. C4H9 has the highest relative intensity in the mass spectrum with a relative intensity of 1.00. It is followed by C2H5 and C2H4 at relative intensities of 0.73 and 0.29 respectively. Because of the negative correlation between C4H9 and these two fragments at positive time delays, it is concluded that most of these smaller molecules are formed from the further dissociation of the fragment C4H9 rather than any alternative pathways from the parent molecule. Thermodynamic analysis of these pathways has displayed the power of thermodynamic prediction as well as its limitations as it fails to consider kinetic limitations in dissociation reactions.

ContributorsGosman, Robert (Author) / Sayres, Scott (Thesis director) / Chizmeshya, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2023-05
Description

Startups in the paper manufacturing industry are few and far between. Agrix paper takes a step towards innovating the traditional mass-scale paper making process and introduces non-wood fiber sourcing into the papermaking space. Using a hemp fiber base, Agrix Paper hopes to develop a new paper manufacturing process that derives

Startups in the paper manufacturing industry are few and far between. Agrix paper takes a step towards innovating the traditional mass-scale paper making process and introduces non-wood fiber sourcing into the papermaking space. Using a hemp fiber base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper sourced from hemp and agriculture waste. Agrix Paper will reinvent the papermaking process for a more green and sustainable future.

ContributorsByrum, Emily (Author) / DiFernando, Anthony (Co-author) / Barraza-Córdova, Erik (Co-author) / Bryne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor)
Created2023-05
Description
Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we use a Bayesian method and place Gaussian Process (GP) Priors on

Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we use a Bayesian method and place Gaussian Process (GP) Priors on the maps. For the sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to non-conjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.
ContributorsKumar, Vishesh (Author) / Presse, Steve (Thesis director) / Bryan IV, J. Shep (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2024-05
155116-Thumbnail Image.png
Description
Moore's law has been the most important driving force for the tremendous progress of semiconductor industry. With time the transistors which form the fundamental building block of any integrated circuit have been shrinking in size leading to smaller and faster electronic devices.As the devices scale down thermal effects and

Moore's law has been the most important driving force for the tremendous progress of semiconductor industry. With time the transistors which form the fundamental building block of any integrated circuit have been shrinking in size leading to smaller and faster electronic devices.As the devices scale down thermal effects and the short channel effects become the important deciding factors in determining transistor architecture.SOI (Silicon on Insulator) devices have been excellent alternative to planar MOSFET for ultimate CMOS scaling since they mitigate short channel effects. Hence as a part of thesis we tried to study the benefits of the SOI technology especially for lower technology nodes when the channel thickness reduces down to sub 10nm regime. This work tries to explore the effects of structural confinement due to reduced channel thickness on the electrostatic behavior of DG SOI MOSFET. DG SOI MOSFET form the Qfinfet which is an alternative to existing Finfet structure. Qfinfet was proposed and patented by the Finscale Inc for sub 10nm technology nodes.

As part of MS Thesis we developed electrostatic simulator for DG SOI devices by implementing the self consistent full band Schrodinger Poisson solver. We used the Empirical Pseudopotential method in conjunction with supercell approach to solve the Schrodinger Equation. EPM was chosen because it has few empirical parameters which give us good accuracy for experimental results. Also EPM is computationally less expensive as compared to the atomistic methods like DFT(Density functional theory) and NEGF (Non-equilibrium Green's function). In our workwe considered two crystallographic orientations of Si,namely [100] and [110].
ContributorsLaturia, Akash (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2016
154064-Thumbnail Image.png
Description
Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo

Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo (MC) solution of the phonon Boltzmann Transport Equation. The phonon MC solver was developed next as part of this thesis. Simulation results of the thermal conductivity in bulk Si show good agreement with theoretical/experimental values from literature.
ContributorsYoo, Seung Kyung (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153429-Thumbnail Image.png
Description
From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce

From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce the number of grid points. However, the problem of how to solve governing equations on non-uniform mesh is then imposed to the numerical solver. Moreover, if a device simulator is integrated into a multi-scale simulator, the problem size will be further increased. Consequently, there exist two challenges for the current numerical solver. One is to increase the functionality to accommodate non-uniform mesh. The other is to solve governing physical equations fast and accurately on a large number of mesh grid points.

This research rst discusses a 2D planar MOSFET simulator and its numerical solver, pointing out its performance limit. By analyzing the algorithm complexity, Multigrid method is proposed to replace conventional Successive-Over-Relaxation method in a numerical solver. A variety of Multigrid methods (standard Multigrid, Algebraic Multigrid, Full Approximation Scheme, and Full Multigrid) are discussed and implemented. Their properties are examined through a set of numerical experiments. Finally, Algebraic Multigrid, Full Approximation Scheme and Full Multigrid are integrated into one advanced numerical solver based on the exact requirements of a semiconductor device simulator. A 2D MOSFET device is used to benchmark the performance, showing that the advanced Multigrid method has higher speed, accuracy and robustness.
ContributorsGuo, Xinchen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2015
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014
155704-Thumbnail Image.png
Description
CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an undoped or fully depleted fin, which supports immunity from random dopant fluctuations (RDF – a phenomenon which causes a reduction in the threshold voltage and is prominent at sub 50 nm tech nodes due to lesser dopant atoms) and thus causes threshold voltage (Vth) roll-off by reducing the Vth. However, as the advanced CMOS technologies are shrinking down to a 5 nm technology node, subthreshold leakage and drain-induced-barrier-lowering (DIBL) are driving the introduction of new metal-oxide-semiconductor field-effect transistor (MOSFET) structures to improve performance. GAA field effect transistors are shown to be the potential candidates for these advanced nodes. In nanowire devices, due to the presence of the gate on all sides of the channel, DIBL should be lower compared to the FinFETs.

A 3-D technology computer aided design (TCAD) device simulation is done to compare the performance of FinFET and GAA nanowire structures with vertically stacked horizontal nanowires. Subthreshold slope, DIBL & saturation current are measured and compared between these devices. The FinFET’s device performance has been matched with the ASAP7 compact model with the impact of tensile and compressive strain on NMOS & PMOS respectively. Metal work function is adjusted for the desired current drive. The nanowires have shown better electrostatic performance over FinFETs with excellent improvement in DIBL and subthreshold slope. This proves that horizontal nanowires can be the potential candidate for 5 nm technology node. A GAA nanowire structure for 5 nm tech node is characterized with a gate length of 15 nm. The structure is scaled down from 7 nm node to 5 nm by using a scaling factor of 0.7.
ContributorsRana, Parshant (Author) / Clark, Lawrence (Thesis advisor) / Ferry, David (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2017