Matching Items (415)
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
136398-Thumbnail Image.png
Description
The purpose of our study was to examine the effectiveness of a cycling intervention on body composition in adolescents with Down syndrome (DS). Participants completed one of three interventions over eight consecutive weeks. The interventions were: 1) Voluntary Cycling (VC), in which participants cycled at their self-selected pedaling rate 2)

The purpose of our study was to examine the effectiveness of a cycling intervention on body composition in adolescents with Down syndrome (DS). Participants completed one of three interventions over eight consecutive weeks. The interventions were: 1) Voluntary Cycling (VC), in which participants cycled at their self-selected pedaling rate 2) Assisted Cycling (AC), in which the participants' voluntary pedaling rates were assisted with a motor to ensure the maintenance of 80 rpms. 3) No cycling (NC), in which the participants acted as controls. Participants in the AC intervention did not decrease body fat or increase lean body mass however they did maintain these measures during the intervention as compared to the VC and NO participants who increased body fat and decreased lean body mass. These statistics were not exactly as expected nor were they statistically significant. Future research will try to replicate this data with statistically significant values for more cycling adolescents with DS using more randomized intervention groups.
ContributorsBennett, Kristen Leigh (Author) / Ringenbach, Shannon (Thesis director) / Brown, Steven (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136401-Thumbnail Image.png
Description
This research study examined the effects of assisted cycling using a stationary recumbent bicycle that had an internal motor to help participants pedal at a desired cadence. The participants were either placed in an Assisted Cycling (AC), Voluntary Cycling (VC), or No Cycling (NC) intervention group. Those placed in the

This research study examined the effects of assisted cycling using a stationary recumbent bicycle that had an internal motor to help participants pedal at a desired cadence. The participants were either placed in an Assisted Cycling (AC), Voluntary Cycling (VC), or No Cycling (NC) intervention group. Those placed in the AC of VC groups then came to a laboratory setting 3 days a week for 8 weeks to cycle for 30 minutes. This research specifically analyzes the Vineland Adaptive Behavior Scale II to analyze the changes in daily living skills and maladaptive behaviors pre and post the exercise intervention. After analyzing the VABS II scores it was found that those in the VC intervention had statistically significant improvements in maladaptive behaviors. An interpretation of this finding is that the VC intervention had an increased heart rate over the span of the intervention and had a larger power output than those in the AC group. A limitation of this research is that it was a self-reported questionnaire that was given to the caregivers of the participant. The caregivers were not always controlled for, so in some cases two different caregivers were given the questionnaire for a single participant. A suggestion for future research would be to use the participant's mental age versus their chronological age when using the VABS-II and to use the Adaptive Behaviors Assessment System III (ABAS-III).
ContributorsJenkins, Cayla Marie (Author) / Ringenbach, Shannon (Thesis director) / Kulinna, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136113-Thumbnail Image.png
Description
This research study examined the bilateral asymmetry found in muscle pairs including the right and left sides of the upper rectus abdominis, lower rectus abdominis, external oblique, and internal oblique in college-aged, apparently fit men and women. Bilateral symmetry was found using surface electromyography (EMG) during three core exercises: 1)

This research study examined the bilateral asymmetry found in muscle pairs including the right and left sides of the upper rectus abdominis, lower rectus abdominis, external oblique, and internal oblique in college-aged, apparently fit men and women. Bilateral symmetry was found using surface electromyography (EMG) during three core exercises: 1) ab-slides using paper plates (paper), 2) planks, and 3) ab-slides using a commercial AbSlide® roller device by comparing maximal voluntary contractions (MVCs) of the four muscles previously listed. This research analyzed the percentage of muscle activation during these exercises to each person’s MVC using Noraxon® software. Analysis found that asymmetry for each muscle group was present although there is no measure of clinical significance for symmetry scores of the core muscles yet.
Asymmetry scores were calculated for all three exercises. The exercise that produced the greatest absolute, average asymmetry score was the ab-slide using the roller device. The muscle that the greatest absolute asymmetry was found was the internal oblique. This means that during the three exercises and MVC, the greatest difference between right and left side pair muscles was observed in the internal obliques. The standard deviation of symmetry scores for all exercises and muscles was great as there was much variation in the skill levels in the participants of this study. Bilateral asymmetry was found by visually comparing the asymmetry scores. In conclusion, bilateral asymmetry was found in the core muscles of college-aged individuals during bilateral abdominal exercises.
ContributorsFavaro, Miguel Angel (Author) / Berger, Christopher (Thesis director) / Lorenz, Kent (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136554-Thumbnail Image.png
Description
This study examines cognitive planning in adolescents with Down syndrome (DS) following an 8-week assisted cycling therapy intervention. Forty-three participants were randomly assigned to assisted cycling (AC) (i.e., at least 30% faster than self-selected cadence accomplished by a motor), voluntary cycling (VC) (self-selected cadence), and no cycling (NC) control group.

This study examines cognitive planning in adolescents with Down syndrome (DS) following an 8-week assisted cycling therapy intervention. Forty-three participants were randomly assigned to assisted cycling (AC) (i.e., at least 30% faster than self-selected cadence accomplished by a motor), voluntary cycling (VC) (self-selected cadence), and no cycling (NC) control group. Both AC and VC rode a stationary bicycle three times/week, 30 minutes/session, for eight weeks in duration. Participants completed cognitive testing that assessed cognitive planning at the beginning (i.e., pretest) and end (i.e., posttest) of the 8-week intervention. Consistent with our hypothesis, the results showed that cognitive planning improved following eight weeks of cycling for the AC group. The same results were not seen for individuals in the VC or NC groups. Our results suggest that assisted cycling therapy may induce permanent changes in the prefrontal cortex in adolescents with DS.
ContributorsMillar, Kelsey Leann (Author) / Ringenbach, Shannon (Thesis director) / Amazeen, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136555-Thumbnail Image.png
Description
This study examines the effectiveness of two modes of exercise on depression in adolescents with Down syndrome (DS). Thirty nine participants were randomly divided into a voluntary cycling group (VC) (i.e., self-selected cadence), an assisted cycling group (AC) (i.e., at least 30% faster than self-selected cadence accomplished by a motor),

This study examines the effectiveness of two modes of exercise on depression in adolescents with Down syndrome (DS). Thirty nine participants were randomly divided into a voluntary cycling group (VC) (i.e., self-selected cadence), an assisted cycling group (AC) (i.e., at least 30% faster than self-selected cadence accomplished by a motor), or a no exercise group (NC). In each cycling intervention the participant completed 30 minute cycling sessions, three times per week for a total of eight weeks. The Children's Depression Inventory II was administered prior to cycling (i.e., pretest) and after the eight week intervention (i.e., posttest). Although the data did not reach conventional levels of statistical significance, the results of the study demonstrated partial support for our hypothesis that adolescents with DS showed improvements in depression as measured by the Children's Depression Inventory II following assisted cycling, but not following eight weeks of voluntary cycling. In other words, eight weeks of moderate AC exercise demonstrated a trend for improved depression in adolescents with DS.
ContributorsMcgownd, Shana Leah (Author) / Ringenbach, Shannon (Thesis director) / Youngstedt, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
Description
Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal purposes, such as drug delivery. For in vivo applications, the DNA nanostructures must have a long circulation life in the bloodstream; otherwise, they could be easily excreted shortly after entry. One way of making these nanostructures long lasting in the blood is to cover them with the biocompatible polymer, polyethylene glycol (PEG). Adding DNA to PEG before forming structures has been found to interfere in the hybridization of the DNA in the structure, resulting in formation of deformed structures. In this study we have developed a new methodology based on "click chemistry" (CC) to modify the surface of DNA nanostructures with PEG after they are formed. These structures can then be used for in vivo studies and potential applications in the future.
ContributorsSmith, Eric Lynn (Author) / Yan, Hao (Thesis director) / Liu, Yan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05