Matching Items (291)
Filtering by

Clear all filters

149647-Thumbnail Image.png
Description
This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.
ContributorsHuang, Shuo (Author) / Lindsay, Stuart (Thesis advisor) / Sankey, Otto (Committee member) / Tao, Nongjian (Committee member) / Drucker, Jeff (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150343-Thumbnail Image.png
Description
In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared. By combining nanobonding experiments, TMAFM results, surface energy data, and ab-initio calculations, an atomistic model is derived and nanobonding is optimized. [1] US Patent 6,613,677 (9/2/03), 7,851,365 (12/14/10), [2] Patent Filed: 4/30/09, 10/1/2011
ContributorsWhaley, Shawn D (Author) / Culbertson, Robert J. (Thesis advisor) / Herbots, Nicole (Committee member) / Rez, Peter (Committee member) / Marzke, Robert F (Committee member) / Lindsay, Stuart (Committee member) / Chamberlin, Ralph V (Committee member) / Arizona State University (Publisher)
Created2011
150402-Thumbnail Image.png
Description
This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is

This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is marked by large transient increases in current through the tube and confirmed by a PCR (polymerase chain reaction) analysis. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurement, and open new avenues for control of DNA translocation. The second experiment constructed devices in which the interior of a single-walled carbon nanotube field-effect transistor (CNT-FET) acts as a nanofluidic channel that connects two fluid reservoirs, permitting measurement of the electronic properties of the SWCNT as it is wetted by an analyte. Wetting of the inside of the SWCNT by water turns the transistor on, while wetting of the outside has little effect. This finding may provide a new method to investigate water behavior at nanoscale. This also opens a new avenue for building sensors in which the SWCNT functions as an electronic detector. This thesis also presents some experiments that related to nanofabrication, such as construction of FET with tin sulfide (SnS) quantum ribbon. This work demonstrates the application of solution processed IV-VI semiconductor nanostructures in nanoscale devices.
ContributorsCao, Zhai (Author) / Lindsay, Stuart (Thesis advisor) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Marzke, Robert (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
Description

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research involved a series of qualitative investigations. I held one-on-one virtual interviews with students in which I asked them questions about the mode they use and why they feel that their chosen mode works best for them. These interviews served two functions. First, they provided me with insight into the various motivations underlying student mode choice. Second, they provided me with an indication of what explanatory variables should be included in a model of mode choice on campus.<br/>The first half of the research project informed a quantitative survey that was released via the Honors Digest to attract student respondents. Data was gathered on travel behavior as well as relevant explanatory variables.<br/>My analysis involved developing a logit model to predict student mode choice on campus and presenting the model estimation in conjunction with a discussion of student travel motivations based on the qualitative interviews. I use this information to make a recommendation on how campus infrastructure could be modified to better support the needs of the student population.

ContributorsMirtich, Laura Christine (Author) / Salon, Deborah (Thesis director) / Fang, Kevin (Committee member) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150243-Thumbnail Image.png
Description
ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a

ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented here are a series of studies toward this goal. First, multi-helical DNA nanostructures were used to investigate how the valency and arrangement of the connections between DNA nanostructures affect super-structure formation. The study revealed that both the number and the relative position of connections play a significant role in the stability of the final assembly. Next, several DNA nanostructures were designed to gain insight into how small changes to the nanostructure scaffolds, intended to vary their conformational flexibility, would affect their association equilibrium. This approach yielded quantitative information about the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Finally, a multi-helical DNA nanostructure was used as a model `chip' for the detection of a single stranded DNA target. The results revealed that the rate constant of hybridization is strongly dominated by a rate-limiting nucleation step.
ContributorsNangreave, Jeanette (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian J.-L. (Committee member) / Seo, Dong Kyun (Committee member) / Arizona State University (Publisher)
Created2011
150245-Thumbnail Image.png
Description
Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the

Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the electrolyte. Electroosmosis drives excess current, carried by cations, and is found to be the origin of giant ionic current through SWCNT as shown by building an ionic field-effect transistor with a gate electrode embedded in the fluid barrier. Wetting of inside of the semi-conducting SWCNT by water showed the change of its electronic property, turning the electronic SWCNT field-effect transistor to "on" state. These findings provide a new method to investigate and control the ion and molecule behavior at nanoscale.
ContributorsPang, Pei (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Shumway, John (Committee member) / Tao, Nongjian (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2011
150143-Thumbnail Image.png
Description
This dissertation describes the work on two projects which involves measuring molecular conductance and studying their properties on the nanoscale using various Scanning Tunneling Microscopy (STM) techniques. The first molecule studied was a porphyrin-fullerene moiety known as a molecular Dyad for photovoltaic applications. This project is further divided into two

This dissertation describes the work on two projects which involves measuring molecular conductance and studying their properties on the nanoscale using various Scanning Tunneling Microscopy (STM) techniques. The first molecule studied was a porphyrin-fullerene moiety known as a molecular Dyad for photovoltaic applications. This project is further divided into two section, the first one involving the characterization of the Dyad monolayers and conductance measurement in the dark. The Dyads are designed to form charge separated states on illumination. The lifetime of the charged states have been measured efficiently but the single-molecule conductance through the molecules have yet to be characterized. The second part of the project describes the set-up of a novel sample stage which enables the study of molecular conductance under illumination. This part also describes the subsequent study of the molecule under illumination and the observation of a unique charge-separated state. It also contains the verification of the presence of this charge-separated using other characterization techniques like transient absorption spectroscopy. The second project described in the dissertation was studying and comparing the predicted rectifying nature of two molecules, identical in every way except for one stereocenter. This project describes the formation of monolayers of the molecule on gold and then studying and analyzing the current-voltage characteristics of the molecules and looking for rectification. Both the molecules proved to be rectifying, one more than the other as predicted by theoretical calculations.
ContributorsBhattacharyya, Shreya (Author) / Lindsay, Stuart (Thesis advisor) / Moore, Ana (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2011
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05