Matching Items (636)
136092-Thumbnail Image.png
Description
The Art of Extraction: ABSTRACT
Anthropocentric society faces a multiplicity of environmental challenges, catalyzed and perpetuated by urban-industrial culture. Many of today’s perspectives and sustainable strategies cannot accommodate the challenges’ inherent complexity. Because urban-industrial society is only projected to grow, both in enormity and influence, the only viable option is to

The Art of Extraction: ABSTRACT
Anthropocentric society faces a multiplicity of environmental challenges, catalyzed and perpetuated by urban-industrial culture. Many of today’s perspectives and sustainable strategies cannot accommodate the challenges’ inherent complexity. Because urban-industrial society is only projected to grow, both in enormity and influence, the only viable option is to elucidate the complexity and employ it.
A potential setting in which to frame this exploration is the intersection of urbanism, landscape, and ecology –an overlap first introduced by the theories of Landscape Urbanism and Ecological Urbanism. Here, urbanization is not just discussed as an isolated phenomenon but one that is embedded within and responding to a variety of systems and scales. The methodologies of Landscape Urbanism and Ecological Urbanism also acknowledge artists and the visual arts as invaluable tools for realizing, communicating, and inspiring the new perspectives and modes of intervention needed to address the aforementioned urban complexity. Such artists who operate within this realm include Sissel Tolaas, Maya Lin, Katrin Sigurdardottir, David Maisel, Olafur Eliason, Mierle Ukeles, Suzanne Lacy, Steve Rowell, Mel Chin, and the Center for Land Use Interpretation. Case study analyses reveal many of these artists begin their investigations with provocative, searching questions situated within the realms of urbanism, landscape, and ecology. This is proceeded by relative scientific research and/or community involvement or outreach. Furthermore, the artists work within and extrapolate from a variety of other disciplines —increasing the scope and applicability of their work. The information they collect via this multidisciplinary approach is then metaphorically translated to the visual arts, where the public can not only physically or sensorially experience it, but understand and deduce its meaning and significance: public awareness being one of the more essential aspects of a sustainable society and at the root of our current struggle.
As a designer and architect, I will engage the artist’s mindset to explore the current and complex issue of resource extraction within Superior, Arizona: a topic at the core of urbanism, landscape, and ecology. While the town is not considered "urban" by standard definition, it and its surrounding landscapes are indirectly sculpted by the needs of urban society —rendering it the setting for this application. Within a group, we will begin with a searching question. We will conduct relative scientific research, engage the community of Superior, and call upon a variety of other disciplines to aid and inform our work. Through metaphor, the research and resulting discoveries will be artistically represented and composed within a designed exhibition of hopeful “things” (See Bruno Latour, “From Realpolitik to Dingpolitik”). This exhibition will theoretically take place on Superior’s currently dilapidated Main Street, amid a more accessible sphere. The eventual goal of the project is to illuminate and understand the complexities of resource extraction, specifically within Superior, while also enabling public awareness and empowerment through lucidity and comprehension.
ContributorsTwilling, Emilie Marie (Author) / Stayner, Christian (Thesis director) / Harris, Catherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136119-Thumbnail Image.png
Description
After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate

After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate ship, or being in a fantasy castle by captivating children in playtime. The design allows for a frightening experience to become a positive one.
ContributorsHerold, Brittany Ann (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136120-Thumbnail Image.png
Description
I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed

I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed a system of products that improves the user experiences surrounding water. The result is IOW, an intelligent 3-product system that aims to make your water needs & wants smarter & less wasteful.
ContributorsShappee, Christian Kyle (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136560-Thumbnail Image.png
Description
As the poverty level increases in Arizona, so does the opportunity gap between high- income and low-income students. We believe that all youth regardless of their zip code, the color of their skin, or their family background should see themselves as leaders and scholars in the community. Access to higher

As the poverty level increases in Arizona, so does the opportunity gap between high- income and low-income students. We believe that all youth regardless of their zip code, the color of their skin, or their family background should see themselves as leaders and scholars in the community. Access to higher education, quite simply should be attainable for all students. The New American University charter that ASU has adopted is inspiring and groundbreaking. We believe this charter underscores the significance of equal access to education. The REACH program embraces the urgency of educational inequity, by enhancing the potential success of high school teenagers, who attend the Boys & Girls Club \u2014 Ladmo Branch in Tempe, Arizona. REACH empowers youth to develop stronger leadership skills, while becoming more involved in their community. We provide an opportunity for these teens to engage in leadership discussions, receive college mentoring/tutoring, and connect with the community and resources that Arizona State University (ASU) has to offer. It is our hope that every REACH teen is inspired to apply for college. REACH strives to provide any support the teens require to be successful throughout the college testing and admission process. REACH works with multiple communities at Arizona State University including the Pat Tillman Scholars, Devils' Advocates, Honors Devils, Changemaker Central, Barrett, The Honors College and W. P. Carey School of Business to organize and lead a group of teens through a remarkable curriculum that will shape the way they view cultural diversity, educational achievement, and leadership. The weekly meetings consist of discussions, creative team-building, critical thinking exercises, and cultural awareness experiences. Demonstrating to the teens, administrators, volunteers, mentors, and tutors the rich culture that Tempe has to offer and the skills and experience that they have to offer their community as well. In this thesis will we present our work developing and implementing the REACH program at the Ladmo Branch of the Tempe Boys and Girls Club from the Spring of 2013 through the Spring of 2015. We will describe the structure of REACH, our weekly leadership curriculum, our assessment and evaluation method, and the supplemental programs that we instituted (i.e., tutoring and mentoring). We will reflect on our successes and the challenges that we faced over the span of three years. We will conclude our thesis with a critical analysis of the program as a whole in order to provide advice for others who want to create and engage in a sustainable, student lead, community action organization.
ContributorsBurba, Monica (Co-author) / Smith, Jenna (Co-author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Sustainability (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
Description
Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal purposes, such as drug delivery. For in vivo applications, the DNA nanostructures must have a long circulation life in the bloodstream; otherwise, they could be easily excreted shortly after entry. One way of making these nanostructures long lasting in the blood is to cover them with the biocompatible polymer, polyethylene glycol (PEG). Adding DNA to PEG before forming structures has been found to interfere in the hybridization of the DNA in the structure, resulting in formation of deformed structures. In this study we have developed a new methodology based on "click chemistry" (CC) to modify the surface of DNA nanostructures with PEG after they are formed. These structures can then be used for in vivo studies and potential applications in the future.
ContributorsSmith, Eric Lynn (Author) / Yan, Hao (Thesis director) / Liu, Yan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136072-Thumbnail Image.png
Description
The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money

The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money it receives. I investigate potential ethical and societal issues anti-aging technology might create. This paper addresses inequality of access, economic cost, changes in quality of life, the role of death in human life, if and how the technology should be regulated and how parties who choose not to undergo treatment can be fairly treated, even when they are a minority.
Created2015-05
136074-Thumbnail Image.png
Description
For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent

For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent input parser for nomenclature questions within this system. Students in Dr. Gould's Fall 2014 organic chemistry class used this system and their data was collected to analyze the effectiveness of the input parser. Overall the students' feedback was optimistic and there was a positive relationship between test scores and student use of the system.
ContributorsHusarcik, Edward Andrew (Author) / Gould, Ian (Thesis director) / VanLehn, Kurt (Committee member) / Beerman, Eric (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05