Matching Items (414)
151216-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.
ContributorsWilkie, Lynn Melissa (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
151225-Thumbnail Image.png
Description
Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on

Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on gut fermentation. In this parallel arm randomized control trial, the effects of daily ingestion of vinegar on gut fermentation markers were observed among adults at risk for type 2 diabetes in Phoenix, Arizona. Subjects (n=14) were randomly assigned to treatments consisting of a vinegar drink (1.5g acetic acid) or a placebo (2 vinegar pills containing 40mg acetic acid each). All participants were required to consume the vinegar drink (16 oz) or 2 placebo pills every day for 12 weeks. At week 12, participants filled out a questionnaire to report gastrointestinal (GI) symptoms and three consecutive breath samples were taken from each subject to measure fasting breath hydrogen (BH2) with a breath analyzer. Fasting BH2 measures for the vinegar drink group (16.1+11.8 ppm) were significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.39 (p=0.023). After adjusting for age as a confounding factor (r=0.406) and removing an outlier, fasting BH2 measures for the vinegar drink group (4.3+1.1 ppm) were still significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.35 (p=0.045). Participants in both groups reported mild changes in GI symptoms. In conclusion, adults at risk for type 2 diabetes that consume 2 tablespoons of vinegar a day may have increased gut fermentation compared to those who do not consume vinegar.
ContributorsWhite, Serena (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Martin, Keith (Committee member) / Arizona State University (Publisher)
Created2013
151273-Thumbnail Image.png
Description
ABSTRACT This randomized, controlled, double-blind crossover study examined the effects of a preprandial, 20g oral dose of apple cider vinegar (ACV) on colonic fermentation and glycemia in a normal population, with the ultimate intention of identifying the mechanisms by which vinegar has been shown to reduce postprandial glycemia and insulinemia.

ABSTRACT This randomized, controlled, double-blind crossover study examined the effects of a preprandial, 20g oral dose of apple cider vinegar (ACV) on colonic fermentation and glycemia in a normal population, with the ultimate intention of identifying the mechanisms by which vinegar has been shown to reduce postprandial glycemia and insulinemia. Fifteen male and female subjects were recruited, ages 20-60y, who had no prior history of gastrointestinal (GI) disease or resections impacting normal GI function, were non-smokers, were non-vegetarian/vegan, were not taking any medications known to alter (glucose) metabolism, and were free of chronic disease including diabetes. Subjects were instructed to avoid exercise, alcohol and smoking the day prior to their trials and to consume a standardized, high-carbohydrate dinner meal the eve prior. There was a one-week washout period per subject between appointments. Breath hydrogen, serum insulin and capillary glucose were assessed over 3 hours after a high-starch breakfast meal to evaluate the impact of preprandial supplementation with ACV or placebo (water). Findings confirmed the antiglycemic effects of ACV as documented in previous studies, with significantly lower mean blood glucose concentrations observed during ACV treatment compared to the placebo at 30 min (p=0.003) and 60 min (p=0.005), and significantly higher mean blood glucose concentrations at 180 min (p=0.045) postprandial. No significant differences in insulin concentrations between treatments. No significant differences were found between treatments (p>0.05) for breath hydrogen; however, a trend was observed between the treatments at 180 min postprandial where breath hydrogen concentration was visually perceived as being higher with ACV treatment compared to the placebo. Therefore, this study failed to support the hypothesis that preprandial ACV ingestion produces a higher rate of colonic fermentation within a 3 hour time period following a high-carbohydrate meal. Due to variations in experiment duration noted in other literature, an additional study of similar nature with an expanded specimen collections period, well beyond 3 hours, is warranted.
ContributorsMedved, Emily M (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2012
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
Description
Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal purposes, such as drug delivery. For in vivo applications, the DNA nanostructures must have a long circulation life in the bloodstream; otherwise, they could be easily excreted shortly after entry. One way of making these nanostructures long lasting in the blood is to cover them with the biocompatible polymer, polyethylene glycol (PEG). Adding DNA to PEG before forming structures has been found to interfere in the hybridization of the DNA in the structure, resulting in formation of deformed structures. In this study we have developed a new methodology based on "click chemistry" (CC) to modify the surface of DNA nanostructures with PEG after they are formed. These structures can then be used for in vivo studies and potential applications in the future.
ContributorsSmith, Eric Lynn (Author) / Yan, Hao (Thesis director) / Liu, Yan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136072-Thumbnail Image.png
Description
The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money

The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money it receives. I investigate potential ethical and societal issues anti-aging technology might create. This paper addresses inequality of access, economic cost, changes in quality of life, the role of death in human life, if and how the technology should be regulated and how parties who choose not to undergo treatment can be fairly treated, even when they are a minority.
Created2015-05
136074-Thumbnail Image.png
Description
For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent

For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent input parser for nomenclature questions within this system. Students in Dr. Gould's Fall 2014 organic chemistry class used this system and their data was collected to analyze the effectiveness of the input parser. Overall the students' feedback was optimistic and there was a positive relationship between test scores and student use of the system.
ContributorsHusarcik, Edward Andrew (Author) / Gould, Ian (Thesis director) / VanLehn, Kurt (Committee member) / Beerman, Eric (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05