Matching Items (849)
Filtering by

Clear all filters

148124-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines. Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies. This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single-use. Food is the largest market out of all the packaging industry, maintaining roughly two-thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will, in turn, release toxic chemicals like Bisphenol-A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsDeng, Aretha (Co-author) / Tao, Adlar (Co-author) / Vargas, Cassandra (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148132-Thumbnail Image.png
Description

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and Double Cantilever Beam (DCB) test. The ENF test is designed to <br/>find the mode II interlaminar fracture toughness, and the DCB test, the mode I interlaminar <br/>fracture toughness. In this thesis, thermopressed Honeywell Spectra Shield® 5231 <br/>composite specimens made of ultra-high molecular weight polyethylene (UHMWPE), <br/>manufactured under two different pressures (3000 psi and 6000 psi), are tested in the <br/>laboratory to find its delamination properties. The test specimen preparation, experimental <br/>procedures, and data reduction to determine the mode I and mode II interlaminar fracture <br/>properties are discussed. The ENF test results show a 15.8% increase in strain energy <br/>release rate for the 6000 psi specimens when compared to the 3000 psi specimens. <br/>Conducting the DCB tests proved to be challenging due to the low compressive strength <br/>of the material and hence required modifications to the test specimens. An estimate of the <br/>mode I interlaminar fracture toughness was found for only two of the 6000 psi specimens.

ContributorsRyder, Chandler (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Neithalath, Narayanan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsKarthikeyan, Sayish Priya (Co-author) / Ranganathan, Anirudh (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148167-Thumbnail Image.png
Description

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered by 3D printed hinges. Current efforts frequently employ advanced materials and equipment that are not available to all users. The purpose of this project was to develop a parametric, print-in-place, self-locking hinge that could be printed using very basic materials and equipment. Six main designs were developed, printed, and tested for their strength in maintaining a locked position. Two general design types were used: 1) sliding hinges and 2) removable pin hinges. The test results were analyzed to identify and explain the causes of observed trends. The amount of interference between the pin vertex and knuckle hole edge was identified as the main factor in hinge strength. After initial testing, the designs were modified and applied to several structures, with successful results for a collapsible hexagon and a folding table. While the initial goal was to have one CAD model as a final product, the need to evaluate tradeoffs depending on the exact application made this impossible. Instead, a set of design guidelines was created to help users make strategic decisions and create their own design. Future work could explore additional scaling effects, printing factors, or other design types.

ContributorsAndreotti, Jaimee Jeannette (Author) / Bhate, Dhruv (Thesis director) / Aukes, Daniel (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148172-Thumbnail Image.png
Description

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced simultaneously. This study tests if the combination of semi-transparent PV films and a transmission control layer can generate energy and spectrally control the transmission of light into a greenhouse. Testing the layer combinations in a variety of real-world conditions, it was shown that light can be spectrally controlled in a greenhouse. The transmission was overall able to be controlled by an average of 11.8% across the spectrum of sunlight, with each semi-transparent PV film able to spectrally select transmission of light in both the visible and near-infrared light wavelength. The combination of layers was also able to generate energy at an average efficiency of 8.71% across all panels and testing conditions. The most efficient PV film was the blue dyed, at 9.12%. This study also suggests additional improvements for this project, including the removal of the red PV film due to inefficiencies in spectral selection and additional tests with new materials to optimize plant growth and energy generation in a variety of light conditions.

ContributorsGunderson, Evan (Author) / Phelan, Patrick (Thesis director) / Villalobos, Rene (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148185-Thumbnail Image.png
Description

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation is then depicted through a modified pitch book that contains a financial model and pro forma.

ContributorsLarrea, Justin (Co-author) / Berger, Nicholas (Co-author) / Peters, Matthew (Co-author) / Simonson, Mark (Thesis director) / Gray, William (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148015-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsTam, Monet (Co-author) / Chakravarti, Renuka (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148022-Thumbnail Image.png
Description

This thesis looks at three different inventory management strategies that can be implemented into a small business. Using GameSet Style as a research subject, this study analyzes current practices and problems that can be fixed when dealing with an excess amount of inventory. The three inventory management strategies that are

This thesis looks at three different inventory management strategies that can be implemented into a small business. Using GameSet Style as a research subject, this study analyzes current practices and problems that can be fixed when dealing with an excess amount of inventory. The three inventory management strategies that are compared are demand forecasting, inventory management software, and ABC analysis. Inventory can be a small business's highest cost if not managed effectively. The goal for this thesis is to find the best obtainable solution for a small business like GameSet that can be implemented into their business strategy.

ContributorsPatterson, Alexandra Mercedes (Author) / Byrne, Jared (Thesis director) / Kahley, Lisa (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05