Matching Items (1,061)
Filtering by

Clear all filters

135580-Thumbnail Image.png
Description
Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been shown to develop cardiovascular disease and cognitive impairments, and those

Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been shown to develop cardiovascular disease and cognitive impairments, and those who have displayed overexpression of FOXO3 have shown to have a longer lifespan. Here we took each pathway and attempted to formulate a feedback mechanism loop linking all three separate pathways. We propose that vitamin D levels modulate klotho activity, including the expression of the s-klotho and m-klotho isoforms. Moreover, the anti-oxidation transcription factor FOXO3 is also thought to participate in crosstalk with VDR signaling. Through the connection between 1,25D and Klotho, we probed at their interactions with FOXO3 signaling in kidney and colon cells, and proposed that vitamin D and klotho may reduce oxidative stress and suppress the onset of epithelial cancers through it effects on FOXO3. Results showed a strong support for the cooperation between FOXO3 and 1,25D to stimulate both superoxide dismutase (a FOXO3 response element) and XDR3/ROC (vitamin D response elements). This cooperation was mostly seen in embryonic kidney cells (HEK293) and not in the colon cancer cells (HCT116), which has led to the conclusion that vitamin D and FOXO3 cooperation mainly occurs in kidney tissue and/or in tissue that is not yet been overtaken by cancer. Differences in the Klotho isoforms were seen when measuring FOXO3 and vitamin D activity, but experiments manipulating other components will need to be conducted to further understand the function of Klotho in maintaining reactive oxygenated species levels.
ContributorsSandoval, Ruby (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd R. (Committee member) / Heck, Michael (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136871-Thumbnail Image.png
Description
Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the

Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the host’s immune system is capable of destroying the virus, but during chronic infections it becomes exhausted and T cells lose their effector functions necessary for the clearance of the virus. IL-2 can help relieve this exhaustion, but causes toxicity to the body. In mice infected with chronic LCMV, IL-2 administration causes death due to pulmonary hemorrhage. CD4 deficient mice were infected with chronic LCMV and then dosed with IL-2 and survived, but mice that were deficient for CD8 T cells died, indicating that toxicity was mediated by CD8 T cells. CD8 T cells can kill infected host cells directly by producing perforin, or can produce cytokines like IFN-γ and TNF to further activate the immune system and mediate killing. Mice that were deficient in perforin died after IL-2 administration, as well as mice that were deficient in IFN-γ. Mice deficient in TNF, however, survived, indicating that TNF was mediating the toxicity in response to IL-2. There are two different receptors for TNF, p55 and p75. p55 is known as TNFR1 and has been implicated in apoptosis of virally infected cells. P75 is known as TNFR2 and is associated more with inflammation in response to infection. My hypothesis was that if TNFR2 was knocked out, infected mice would survive IL-2 dosing. When single knockouts of TNFR1 and 2 were used in an experiment however, it was found that either receptor is capable of mediating toxicity, as both experimental groups failed to survive. This is relevant to current IL-2 therapies because there is no way to eliminate a single receptor in order to reduce toxicity. Further studies exploring the anti-viral capabilities of IFN-γ are suggested.
ContributorsJarvis, Jordan Alisa (Author) / Blattman, Joseph (Thesis director) / Denzler, Karen (Committee member) / McAfee, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05