Matching Items (581)
Filtering by

Clear all filters

135547-Thumbnail Image.png
Description
The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a

The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a probabilistic analysis to describe the variation between replicates of the experimental process, and analyze reliability of a structural system based on that model. In order to help design the EDP software to perform the full analysis, the probabilistic and regression modeling aspects of this analysis have been explored. The focus has been on creating and analyzing probabilistic models for the data, adding multivariate and nonparametric fits to raw data, and developing computational techniques that allow for these methods to be properly implemented within EDP. For creating a probabilistic model of replicate data, the normal, lognormal, gamma, Weibull, and generalized exponential distributions have been explored. Goodness-of-fit tests, including the chi-squared, Anderson-Darling, and Kolmogorov-Smirnoff tests, have been used in order to analyze the effectiveness of any of these probabilistic models in describing the variation of parameters between replicates of an experimental test. An example using Young's modulus data for a Kevlar-49 Swath stress-strain test was used in order to demonstrate how this analysis is performed within EDP. In order to implement the distributions, numerical solutions for the gamma, beta, and hypergeometric functions were implemented, along with an arbitrary precision library to store numbers that exceed the maximum size of double-precision floating point digits. To create a multivariate fit, the multilinear solution was created as the simplest solution to the multivariate regression problem. This solution was then extended to solve nonlinear problems that can be linearized into multiple separable terms. These problems were solved analytically with the closed-form solution for the multilinear regression, and then by using a QR decomposition to solve numerically while avoiding numerical instabilities associated with matrix inversion. For nonparametric regression, or smoothing, the loess method was developed as a robust technique for filtering noise while maintaining the general structure of the data points. The loess solution was created by addressing concerns associated with simpler smoothing methods, including the running mean, running line, and kernel smoothing techniques, and combining the ability of each of these methods to resolve those issues. The loess smoothing method involves weighting each point in a partition of the data set, and then adding either a line or a polynomial fit within that partition. Both linear and quadratic methods were applied to a carbon fiber compression test, showing that the quadratic model was more accurate but the linear model had a shape that was more effective for analyzing the experimental data. Finally, the EDP program itself was explored to consider its current functionalities for processing data, as described by shear tests on carbon fiber data, and the future functionalities to be developed. The probabilistic and raw data processing capabilities were demonstrated within EDP, and the multivariate and loess analysis was demonstrated using R. As the functionality and relevant considerations for these methods have been developed, the immediate goal is to finish implementing and integrating these additional features into a version of EDP that performs a full streamlined structural analysis on experimental data.
ContributorsMarkov, Elan Richard (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136216-Thumbnail Image.png
Description
In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as the control optimization algorithm. We find a timescale of transfer for spin quantum information across the chain fitting with a t > π/A and t > 2π/A transfer pulse time corresponding with rotation of states on the electron Bloch sphere where A is the electron-nuclear coupling constant. Introduction of a magnetic field weakens transfer
efficiencies at high field strengths and prohibits anti-aligned nuclear states from transferring. We also develop a rudimentary theoretical model based on simulated results and partially validate the characteristic transfer times for spin states. This model also establishes a framework for future work including the introduction of a magnetic field.
ContributorsMorgan, Eric Robert (Author) / Treacy, Michael (Thesis director) / Whaley, K. Birgitta (Committee member) / Greenman, Loren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
Description
The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the Apis melliifera honeybee colony by the Acute Bee Paralysis Virus,

The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the Apis melliifera honeybee colony by the Acute Bee Paralysis Virus, which is transmitted by the parasitic Varroa destructor. This is a four dimensional system of nonlinear ODE's for healthy and virus infected bees, total number of mites in the colony and number of mites that carry the virus. The Acute Bee Paralysis Virus can be transmitted between infected and uninfected bees, infected mite to adult bee, infected bee to phoretic mite, and reproductive mites to bee brood. This model is studied with analytical techniques deriving the conditions under which the bee colony can fight off an Acute Bee Paralysis Virus epidemic.
ContributorsDavis, Talia Lasandra (Author) / Kang, Yun (Thesis director) / Lanchier, Nicolas (Committee member) / Moore, Marianne (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135937-Thumbnail Image.png
Description
With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for

With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for distributed generation. As the debate grows, it is clear that solar policies developed in Arizona will influence other state regulators regarding their solar rate structures and Net Energy Metering; however, there is a hindrance in the progress of this discussion due to the varying frameworks of the stakeholders involved. For this project, I set out to understand and analyze why the different stakeholders have such conflicting viewpoints. Some groups interpret energy as a financial and technological object while others view it is an inherently social and political issue. I conducted research in three manners: 1) I attended public meetings, 2) hosted interviews, and 3) analyzed reports and studies on the value of solar. By using the SRP 2015 Rate Case as my central study, I will discuss how these opposing viewpoints do or do not incorporate various forms of justice such as distributive, participatory, and recognition justice. In regards to the SRP Rate Case, I will look at both the utility- consumer relationship and the public meeting processes in which they interact, in addition to the pricing plans. This work reveals that antiquated utility structures and a lack of participation and recognition justice are hindering the creation of policy changes that satisfy both the needs of the utilities and the community at large.
ContributorsGidney, Jacob Robert (Author) / Richter, Jennifer (Thesis director) / Jurik, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
131038-Thumbnail Image.png
Description
Water scarcity is still an issue across the globe, so nonconventional desalination methods need to be developed to be able to get access to clean, safe water. One such method being studied is the pervaporation system, a membrane process that uses a vapor pressure differential to drive the system. There

Water scarcity is still an issue across the globe, so nonconventional desalination methods need to be developed to be able to get access to clean, safe water. One such method being studied is the pervaporation system, a membrane process that uses a vapor pressure differential to drive the system. There is a need to find the efficiency of the cold trap condenser that is used to collect the permeate so that a thermodynamic model can be fully developed to assist in the development of an industrial scale pervaporation system. An efficiency was not able to be confidently found, but it is believe to be between 95-100%.
Created2020-12
131854-Thumbnail Image.png
Description
The purpose of this thesis project is to analyze the impact that patient death has on long-term care providers. This study draws upon my own experience working as a licensed nursing assistant in a long-term care facility and also uses a qualitative analysis of six semi-structured interviews with other nursing

The purpose of this thesis project is to analyze the impact that patient death has on long-term care providers. This study draws upon my own experience working as a licensed nursing assistant in a long-term care facility and also uses a qualitative analysis of six semi-structured interviews with other nursing assistants and hospice volunteers. With patient death being an unavoidable part of working in this area of healthcare, I explore how these care providers cope with losing their patients and the effectiveness of these coping mechanisms. Some strategies found that aided in coping with grief included staying detached from patients, being distracted by other aspects of the job, receiving support from co-workers, family members and/or supervisors, and having a religious outlook on what happens following death. In addition to these, I argue that care providers also utilize the unconscious defense mechanism of repression to avoid their feelings of grief and guilt. Repressing the grief and emotions that come along with patient death can protect the individual from additional pain in order for them to continue to do their difficult jobs. Being distracted by other patients also aids in the repression process by avoiding personal feelings temporarily. I also look into factors that have been found to affect the level of grief including the caregiver’s closeness to the patient, level of preparedness for the death, and first experience of losing a patient. Ultimately, I show that the common feelings accompanied by patient death (sadness, anger and stress) and the occurrence of burnout are harmful symptoms of the repression taking place.
ContributorsMasterson, Kaitlin (Author) / Loebenberg, Abby (Thesis director) / Mack, Robert (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This paper attempts to introduce analytics and regression techniques into the National Hockey League. Hockey as a sport has been a slow adapter of analytics, and this can be attributed to poor data collection methods. Using data collected for hockeyreference.com, and R statistical software, the number of wins a team

This paper attempts to introduce analytics and regression techniques into the National Hockey League. Hockey as a sport has been a slow adapter of analytics, and this can be attributed to poor data collection methods. Using data collected for hockeyreference.com, and R statistical software, the number of wins a team experiences will be predicted using Goals For and Goals Against statistics from 2005-2017. The model showed statistical significance and strong normality throughout the data. The number of wins each team was expected to experience in 2016-2017 was predicted using the model and then compared to the actual number of games each team won. To further analyze the validity of the model, the expected playoff outcome for 2016-2017 was compared to the observed playoff outcome. The discussion focused on team's that did not fit the model or traditional analytics and expected forecasts. The possible discrepancies were analyzed using the Las Vegas Golden Knights as a case study. Possible next steps for data analysis are presented and the role of future technology and innovation in hockey analytics is discussed and predicted.
ContributorsVermeer, Brandon Elliot (Author) / Goegan, Brian (Thesis director) / Eaton, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing technology is electronic voting. The feasibility of explaining electronic voting protocols was directly investigated through the generation of a presentation

As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing technology is electronic voting. The feasibility of explaining electronic voting protocols was directly investigated through the generation of a presentation based on journal articles and papers identified by the investigator. Extensive use of analogy and visual aids were used to explain various cryptographic concepts. The presentation was then given to a classroom of ASU freshmen, followed by a feedback survey. A self-evaluation on the presentation methods is conducted, and a procedure for explaining subjects in computer science is proposed based on the researcher's personal process.
ContributorsReniewicki, Peter Josef (Author) / Bazzi, Rida (Thesis director) / Childress, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132440-Thumbnail Image.png
Description
In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental

In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental contact, and was connected to a small copper wire in the shape of a ring. The maximum voltage that could be experienced via incidental contact was well within safe ranges a 0.3mA. Within minutes of its completion the trap was able to trap small Lycopodium powder spores mass of approximately 1.7*10^{-11}kg in clusters of 15-30 for long timescales. The oscillations of these spores were observed to be roughly 1.01mm at their maximum, and in an attempt to understand the dynamics of the Ion Trap, a concept called the pseudo-potential of the trap was used. This method proved fairly inaccurate, involving much estimation and using a static field estimation of 9.39*10^8 N\C and a charge estimate on the particles of ~1e, a maximum oscillation distance of 1.37m was calculated. Though the derived static field strength was not far off from the field strength required to achieve the correct oscillation distance (Percent error of 9.92%, the small discrepancy caused major calculation errors. The trap's intended purpose however was to eventually trap protein molecules for mapping via XFEL laser, and after its successful construction that goal is fairly achievable. The trap was also housed in a vacuum chamber so that it could be more effectively implemented with the XFEL.
ContributorsNicely, Ryan Joseph (Author) / Kirian, Richard (Thesis director) / Weiterstall, Uwe (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
I study some comparative statics implications of disappointment-averse preferences for optimal portfolios. Specifically, I find that risk-averse disappointment-averse investors increase investment in a risky asset as a result of a monotone likelihood ratio improvement in the asset’s distribution, a subset of First Order Stochastic improvements. This gives a testable implication between the disappointment aversion

I study some comparative statics implications of disappointment-averse preferences for optimal portfolios. Specifically, I find that risk-averse disappointment-averse investors increase investment in a risky asset as a result of a monotone likelihood ratio improvement in the asset’s distribution, a subset of First Order Stochastic improvements. This gives a testable implication between the disappointment aversion model, and alternatives, including expected utility. I also discuss previously noted implications for disappointment aversion in helping explain the equity premium puzzle.
ContributorsWarrier, Raghav (Author) / Schlee, Edward (Thesis director) / Almacen, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05