Matching Items (6)
157729-Thumbnail Image.png
Description
Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker changes by altered secretion of EVs during diseased conditions like

Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker changes by altered secretion of EVs during diseased conditions like cancer, inflammation, etc. that express a constant level of a given biomarker, stable secretion of EVs with altered biomarker expression, or a combination of these two factors. This issue was addressed by developing a nanoparticle and dye-based fluorescent immunoassay that can distinguish among these possibilities by normalizing EV biomarker level(s) to EV abundance, revealing average expression levels of EV biomarker under observation. In this approach, EVs are captured from complex samples (e.g. serum), stained with a lipophilic dye and hybridized with antibody-conjugated quantum dot probes for specific EV surface biomarkers. EV dye signal is used to quantify EV abundance and normalize EV surface biomarker expression levels. EVs from malignant (PANC-1) and nonmalignant pancreatic cell lines (HPNE) exhibited similar staining, and probe-to-dye ratios did not change with EV abundance, allowing direct analysis of normalized EV biomarker expression without a separate EV quantification step. This EV biomarker normalization approach markedly improved the ability of serum levels of two pancreatic cancer biomarkers, EV EpCAM, and EV EphA2, to discriminate pancreatic cancer patients from nonmalignant control subjects. The streamlined workflow and robust results of this assay are suitable for rapid translation to clinical applications and its flexible design permits it to be rapidly adapted to quantitate other EV biomarkers by the simple swapping of the antibody-conjugated quantum dot probes for those that recognize a different disease-specific EV biomarker utilizing a workflow that is suitable for rapid clinical translation.
ContributorsRodrigues, Meryl (Author) / Hu, Tony (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Kiani, Samira (Committee member) / Smith, Barbara (Committee member) / Han, Haiyong (Committee member) / Arizona State University (Publisher)
Created2019
128380-Thumbnail Image.png
Description

Background: Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5 year survival rate of 20–30 %. Various factors have been implicated in the pathogenesis of ACC including dysregulation of the G2/M transition and aberrant activity of p53 and MDM2. Polo-like kinase 1 (PLK-1) negatively modulates p53 functioning, promotes MDM2 activity

Background: Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5 year survival rate of 20–30 %. Various factors have been implicated in the pathogenesis of ACC including dysregulation of the G2/M transition and aberrant activity of p53 and MDM2. Polo-like kinase 1 (PLK-1) negatively modulates p53 functioning, promotes MDM2 activity through its phosphorylation, and is involved in the G2/M transition. Gene expression profiling of 44 ACC samples showed that increased expression of PLK-1 in 29 % of ACC. Consequently, we examined PLK-1’s role in the modulation of the p53 signaling pathway in adrenocortical cancer.

Methods: We used siRNA knock down PLK-1 and pharmacological inhibition of PLK-1 and MDM2 ACC cell lines SW-13 and H295R. We examined viability, protein expression, p53 transactivation, and induction of apoptosis.

Results: Knocking down expression of PLK-1 with siRNA or inhibition of PLK-1 by a small molecule inhibitor, BI-2536, resulted in a loss of viability of up to 70 % in the ACC cell lines H295R and SW-13. In xenograft models, BI-2536 demonstrated marked inhibition of growth of SW-13 with less inhibition of H295R. BI-2536 treatment resulted in a decrease in mutant p53 protein in SW-13 cells but had no effect on wild-type p53 protein levels in H295R cells. Additionally, inhibition of PLK-1 restored wild-type p53’s transactivation and apoptotic functions in H295R cells, while these functions of mutant p53 were restored only to a smaller extent. Furthermore, inhibition of MDM2 with nutlin-3 reduced the viability of both the ACC cells and also reactivated wild-type p53′s apoptotic function. Inhibition of PLK-1 sensitized the ACC cell lines to MDM2 inhibition and this dual inhibition resulted in an additive apoptotic response in H295R cells with wild-type p53.

Conclusions: These preclinical studies suggest that targeting p53 through PLK-1 is an attractive chemotherapy strategy warranting further investigation in adrenocortical cancer.

ContributorsBussey, Kimberly (Author) / Bapat, Aditi (Author) / Linnehan, Claire (Author) / Wandoloski, Melissa (Author) / Dastrup, Erica (Author) / Rogers, Erik (Author) / Gonzales, Paul (Author) / Demeure, Michael J. (Author) / Biodesign Institute (Contributor)
Created2016-01-11
128865-Thumbnail Image.png
Description

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.

ContributorsLiang, Winnie S. (Author) / Craig, David W. (Author) / Carpten, John (Author) / Borad, Mitesh J. (Author) / Demeure, Michael J. (Author) / Weiss, Glen J. (Author) / Izatt, Tyler (Author) / Sinari, Shripad (Author) / Christoforides, Alexis (Author) / Aldrich, Jessica (Author) / Kurdoglu, Ahmet (Author) / Barrett, Michael (Author) / Phillips, Lori (Author) / Benson, Hollie (Author) / Tembe, Waibhav (Author) / Braggio, Esteban (Author) / Kiefer, Jeffrey A. (Author) / Legendre, Christophe (Author) / Posner, Richard (Author) / Hostetter, Galen H. (Author) / Baker, Angela (Author) / Egan, Jan B. (Author) / Han, Haiyong (Author) / Lake, Douglas (Author) / Stites, Edward C. (Author) / Ramanathan, Ramesh K. (Author) / Fonseca, Rafael (Author) / Stewart, A. Keith (Author) / Von Hoff, Daniel (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-10-10
128991-Thumbnail Image.png
Description

Background: Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies

Background: Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis.

Methods: FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis.

Results: Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells.

Conclusions: The identification of a number of FDA-approved drugs as TRAIL sensitizers can expand chemotherapeutic options for combination treatments in prostate and pancreatic cancer diseases.

ContributorsTaylor, David (Author) / Parsons, Christine (Author) / Han, Haiyong (Author) / Jayaraman, Arul (Author) / Rege, Kaushal (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-11-01
129084-Thumbnail Image.png
Description

Background: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scalec linical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise

Background: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scalec linical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise only about 0.2% of gastrointestinal cancers. Consequently, they are often treated as either distal common bile duct or pancreatic cancers.

Methods: We analyzed DNA from a resected cancer of the ampulla of Vater and whole blood DNAfrom a 63 year-old man who underwent a pancreaticoduodenectomy by whole genomesequencing, achieving 37× and 40× coverage, respectively. We determined somatic mutations and structural alterations.

Results: We identified relevant aberrations, including deleterious mutations of KRAS and SMAD4 as well as a homozygous focal deletion of the PTEN tumor suppressor gene. These findings suggest that these tumors have a distinct oncogenesis from either common bile duct cancer or pancreatic cancer. Furthermore, this combination of genomic aberrations suggests a therapeutic context for dual mTOR/PI3K inhibition.

Conclusions: Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.

ContributorsDemeure, Michael J. (Author) / Craig, David W. (Author) / Sinari, Shripad (Author) / Moses, Tracy M. (Author) / Christoforides, Alexis (Author) / Dinh, Jennifer (Author) / Izatt, Tyler (Author) / Aldrich, Jessica (Author) / Decker, Ardis (Author) / Baker, Angela (Author) / Cherni, Irene (Author) / Watanabe, April (Author) / Koep, Lawrence (Author) / Lake, Douglas (Author) / Hostetter, Galen (Author) / Trent, Jeffrey M. (Author) / Von Hoff, Daniel D. (Author) / Carpten, John D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-07-04
129632-Thumbnail Image.png
Description

Background: The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false

Background: The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific.

Results: We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity.

Conclusion: We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

ContributorsChristoforides, Alexis (Author) / Carpten, John D. (Author) / Weiss, Glen J. (Author) / Demeure, Michael J. (Author) / Von Hoff, Daniel D. (Author) / Craig, David W. (Author) / College of Health Solutions (Contributor)
Created2013-05-04