Matching Items (15)
Filtering by

Clear all filters

137293-Thumbnail Image.png
Description
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials

It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Created2014-05
136660-Thumbnail Image.png
Description
Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination

Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination to ethene. First, ethanol and molasses, with and without methanol, were evaluated for their abilities to support complete dechlorination in batch serum bottles. Molasses, the cheapest alternative, supported a similar dechlorination performance to lactate in batch experiments, so we then used it in an upflow anaerobic bioreactor (UABR) to test its ability to support rapid dechlorination in this continuous system. Molasses supported 88% TCE conversion to ethene at a hydraulic retention time (HRT) of 13 hours after 80 days of operation in continuous mode. Compared to the UABR operated previously using lactate and methanol, molasses led to a reduction of TCE conversion to ethene, and a possible increase in time required to produce culture. Additionally, when molasses was used as the electron donor, we encountered new difficulties in the operation of the UABR, such as drastic pH changes. Therefore, I conclude that the savings from using molasses is outweighed by the costs associated with the reduction in dechlorination performance and increase in reactor maintenance. I recommend that lactate and methanol continue to be used as the electron donors in the Krajmalnik- Brown dechlorination lab to support fast-rate and cost-effective production of dechlorinating culture in an UABR. Because molasses supported fast rates of dechlorination in the batch experiment, however, it is potentially a better option than lactate and methanol for batch production of culture or for biostimulation, where the aquifer resembles a batch system. I recommend that further studies be done to reach a general conclusion about the feasibility of molasses as an electron donor for other enhanced bioremediation projects.
ContributorsBondank, Emily Nicole (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Torres, Cesar (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
The purpose of this text is to research and specify inequities present within three South American cities; Medellin, Columbia, Mexico City, Mexico, and Rio de Janeiro, Brazil. This research then considers specific neighborhoods within these cities that have become underprivileged as a result of the inequities, and analyzes architectural insertions

The purpose of this text is to research and specify inequities present within three South American cities; Medellin, Columbia, Mexico City, Mexico, and Rio de Janeiro, Brazil. This research then considers specific neighborhoods within these cities that have become underprivileged as a result of the inequities, and analyzes architectural insertions that have been placed in these communities in hopes of balancing the inequities secluding the communities from the rest of the city. With the information gathered from the three case study cities, another city, Tijuana, Mexico, is examined and ascertained as to what type of inequities are present. Using the methodology implemented in the case studies, a specific architectural insertion is proposed in relation to the problems at hand, with the intent of balancing the inequalities present in an underprivilege neighborhood in Tijuana. Ultimately, the text strives to demonstrate the power of architectural insertions within a community, while highlighting the importance of the effects upon the daily lives of the inhabitants, as well as the dynamics within the community and greater city.
ContributorsBorie, Isabelle Ethelbah (Author) / Spellman, Catherine (Thesis director) / Vekstein, Claudio (Committee member) / Hejduk, Renata (Committee member) / The Design School (Contributor) / School of Sustainable Engineering and the Built Environment (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134434-Thumbnail Image.png
Description
Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments

Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments in anaerobic environments. We define the total biological hydrogen demand as the sum of all electron acceptors that can be used by hydrogen-oxidizing microorganisms. Three sets of anaerobic microcosms were set up with different soils/sediments, named Carolina, Garden, and ASM. The microcosms included 25g of soil/sediment and 75 mL of anaerobic medium. 10 mL of hydrogen were pulse-fed for 100 days. Hydrogen consumption and methane production were tracked using gas chromatography. Chemical analysis of each soil was performed at the beginning of the experiment to determine the concentration of electron acceptors in the soils/sediments, including nitrate, sulfate, iron and bicarbonate. An analysis of the microbial community was done at t = 0 and at the end of the 100 days to examine changes in the microbial community due to the metabolic processes occurring as hydrogen was consumed. Carolina consumed 9810 43 mol of hydrogen and produced 19,572 2075 mol of methane. Garden consumed 4006 33 mol of hydrogen and produced 7,239 543 mol of methane. Lastly, ASM consumed 1557 84 mol of hydrogen and produced 1,325 715 mol of methane. I conclude that the concentration of bicarbonate initially present in the soil had the most influence over the hydrogen demand and microbial community enrichment. To improve this research, I recommend that future studies include a chemical analysis of final soil geochemistry conditions, as this will provide with a better idea of what pathway the hydrogen is taking in each soil.
ContributorsLuna Aguero, Marisol (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
In the realm of environmental engineering, the compound N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), has recently emerged as an environmental concern. 6PPD serves as a tire additive to prolong the lifespan of rubber but can transform into a more toxic derivative, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone), when exposed to ground-level ozone. Initially, my research sought to investigate

In the realm of environmental engineering, the compound N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), has recently emerged as an environmental concern. 6PPD serves as a tire additive to prolong the lifespan of rubber but can transform into a more toxic derivative, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone), when exposed to ground-level ozone. Initially, my research sought to investigate the biodegradation of 6PPD and 6PPD-quinone using microbial cultures. However, unexpected challenges arising from limited solubility and potential toxicity to microorganisms led to a shift in research objectives. The study then refocused on developing methods for detecting and quantifying 6PPD and 6PPD-quinone. The scarcity of literature available on the environmental fate and transport of these compounds underscores the pressing need for further research to gain a comprehensive understanding of the behavior of these chemicals. Consequently, the development of effective detection strategies will enable the development of effective remediation strategies to safeguard aquatic ecosystems.
ContributorsKoenig-Vinicombe, Ryan (Author) / Delgado, Anca (Thesis director) / Skinner, Justin (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-12
185078-Thumbnail Image.png
Description

Microbial chain elongation (CE) has been shown at laboratory scale to drive reductive dehalogenation (RD) of chlorinated ethenes through both primary (oxidation of ethanol) and secondary (fermentation of medium chain carboxylates) hydrogen (H2) production. This process can offer engineers a sustainable in situ bioremediation alternative to address the challenges of

Microbial chain elongation (CE) has been shown at laboratory scale to drive reductive dehalogenation (RD) of chlorinated ethenes through both primary (oxidation of ethanol) and secondary (fermentation of medium chain carboxylates) hydrogen (H2) production. This process can offer engineers a sustainable in situ bioremediation alternative to address the challenges of conventional treatment technologies and processes. To aid in moving this process into field scale applications, a greater understanding of the specific microbiomes involved in both primary and secondary processes is needed. In this study, microbial community analysis was conducted on groundwater microcosms under various CE substrate combinations to quantify the extent of CE and the effect on RD of cis-1,2-dichloroethene (cis-DCE). Taxonomic classification of amplicon sequence variants obtained from DNA extracted from groundwater microcosms were used to characterize microbiomes using QIIME 2. Pielou’s eveness and beta diversity (via unweighted UniFrac distances) analyses were performed to assess the diversity of microbiomes. Overall, low concentration microcosms (excluding L-7:1 EtOH:Butyrate and L-9:1 EtOH:Acetate + Soil) underwent complete RD, as evidenced by significant ethene production. Alpha and beta diversity analyses confirm the findings of chemical data that the overall substrate concentrations played a major role in determining the extent of CE and RD.

ContributorsGaura, Alex (Author) / Delgado, Anca (Thesis director) / Robles, Aide (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-05
168764-Thumbnail Image.png
Description
Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This

Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This dissertation investigated combined physical-chemical and microbiological technologies for combined P and N removal from nonpoint sources. Chapter 2 investigated the combination of basic oxygen furnace (BOF) steel slag and woody mulch for P removal by mineral precipitation and N removal by microbial denitrification. When combined with mulch in column experiments, slag with high fines content achieved complete P removal under unsaturated conditions. Batch experiments showed that microbial denitrification occurred under the highly alkaline conditions created by steel slag, but the timescale differential between P and N removal was a critical barrier to combining these treatment technologies. Chapter 3 evaluated a field-scale slag filter to treat agricultural tile drainage and lab-scale column experiments to provide insight on field conditions that impacted P removal. Increases in alkalinity had negative influences on P removal through inhibition of P mineral precipitation by BOF slag, while blast furnace (BF) steel slag was less impacted by alkalinity due to primarily adsorptive P removal. Regeneration strategies were identified based on water quality and slag type.Chapters 4 and 5 explored biological ion exchange (BIEX) as an option for addressing the timescale offset identified in Chapter 1. In Chapter 4 columns fed with dissolved organic matter (DOM) were not regenerated and over 50% DOM removal was observed, with the primary mechanism of removal identified as secondary ion exchange (SIEX) between sulfate and DOM fractions with high affinities for ion exchange. Chapter 5 aimed to expand BIEX to N treatment through batch denitrification and adsorption experiments, which revealed a positive relationship between molecular weight of organic molecules and their ability to displace nitrate. This work shows that by having an improved understanding of impacted water characteristics, the information presented in this work can be used to select and implement effective treatment technologies for decentralized areas.
ContributorsEdgar, Michael Garrett (Author) / Boyer, Treavor H (Thesis advisor) / Hamdan, Nasser (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2022
165540-Thumbnail Image.png
Description

Chlorinated ethene contamination is present at hundreds of sites around the U.S. and threatens the health and quality of living in many communities. Complete reductive dechlorination of chlorinated ethenes to ethene is possible by the anaerobic bacteria Dehalococcoides mccartyi which uses H2 as an electron donor for the process. Microbial

Chlorinated ethene contamination is present at hundreds of sites around the U.S. and threatens the health and quality of living in many communities. Complete reductive dechlorination of chlorinated ethenes to ethene is possible by the anaerobic bacteria Dehalococcoides mccartyi which uses H2 as an electron donor for the process. Microbial chain elongation (MCE) has recently shown viability as an H2 producing process for reductive dechlorination. This study examined the presence of native chain-elongating organisms in soil and groundwater samples from a Superfund site contaminated with chlorinated ethenes using batch microcosms experiments. The study’s findings have implications for the use of MCE to promote detoxification of chlorinated ethenes at contaminated sites.

ContributorsSilverman, Maxwell (Author) / Delgado, Anca (Thesis director) / Robles, Aide (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2022-05
187746-Thumbnail Image.png
Description
While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and these different classes may have different effects on the proliferation

While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and these different classes may have different effects on the proliferation of ARG. This study evaluated how the three classes of surfactants affected the microbial community’s structure and ARG in O2-based membrane biofilm reactors (O2-MBfRs) that provided at least 98% surfactant removal. Cationic cetrimonium bromide (CTAB) had by far the strongest impact with highest ARG abundance in the biofilm. In particular, Pseudomonas and Stenotrophomonas, the two main genera in the biofilm treating CTAB, were highly correlated to the abundance of ARG for efflux pumps and antibiotic inactivation. CTAB also promoted potential of horizontal gene transfer (HGT) of ARG. Combining results from the metabolome and metagenome identified four possible pathways for CTAB biodegradation. Of special important is a new pathway: β-carbon oxidation of CTAB to produce betaine. An insufficient nitrogen source could lead to irreversible ARB and ARG enrichment in the MBfR biofilm. Finally, a two-stage O2-MBfR successfully removed a high concentration (730 mg/L) of CTAB: Partial CTAB removal in the Lead reactor relieved inhibition in the Lag reactor. Metagenomic analysis also revealed that the Lag reactor was enriched in genes for CTAB and metabolite oxygenation.
ContributorsZheng, Chenwei (Author) / Rittmann, Bruce (Thesis advisor) / Delgado, Anca (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Lai, Yen-Jung (Committee member) / Arizona State University (Publisher)
Created2023