Matching Items (2,014)
Filtering by

Clear all filters

152408-Thumbnail Image.png
Description
Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content.
ContributorsMechtley, Matt R (Author) / Windhorst, Rogier A (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf A (Committee member) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2014
151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
152990-Thumbnail Image.png
Description
I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.
ContributorsRichardson, Mark Lawrence Albert (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Timmes, Frank (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
151191-Thumbnail Image.png
Description
Lyman-alpha (Lyα) galaxies (LAEs) and Lyα blobs (LABs) are objects identified and studied due to their bright Lyα emission lines. This bright emission allows LAEs and LABs to be studied in the distant universe, providing a glimpse into the physical processes occuring in the early universe. This dissertation presents three

Lyman-alpha (Lyα) galaxies (LAEs) and Lyα blobs (LABs) are objects identified and studied due to their bright Lyα emission lines. This bright emission allows LAEs and LABs to be studied in the distant universe, providing a glimpse into the physical processes occuring in the early universe. This dissertation presents three complementary studies of LAEs and LABs at z ~ 3.1. The two main foci of this work are (1) to understand the gas kinematics in both classes of objects and (2) to improve spectral energy distribution (SED) fitting processes to better determine the physical characteristics of LAEs. Gas kinematics in this dissertation means looking for signatures of large-scale winds. This is an exciting astrophysical endeavor, because the results can provide insight into how Lyα photons escape distant galaxies and traverse the IGM, and the results have implications for how the epoch of reionization can be studied with the Lyα line and because winds can be a signature of powerful star formation events. In the first two studies we find signatures of winds in three LAEs by measuring the velocity offset between the redshifts of [OIII] and Lyα in these galaxies. The first two LAEs presented here represent the first ever measurements of [OIII] in Lyα-selected field galaxies. The third study reports no velocity offset between [OIII] and Lyα when the methodology is transferred to a z ~ 3.1 LAB. This lack of velocity offset is an interesting result, however, as powerful outflows and star formation events, which should impart a velocity offset, have been hypothesized as power sources for LABs. In addition to understanding the kinematics of these objects, we introduce a new parameter into the SED fitting process typically used to characterize LAEs. This new parameter enables better determination of characteristics like the age, mass, metallicity, dust content and star formation history of the galaxies in our sample. These characteristics provide a snapshot of galaxies in the universe ~ 11 billion years ago and also provide insight into how these characteristics compare to galaxies at other epochs.
ContributorsMcLinden, Emily (Author) / Rhoads, James (Thesis advisor) / Malhotra, Sangeeta (Committee member) / Timmes, Frank (Committee member) / Scowen, Paul (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
157387-Thumbnail Image.png
Description
The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid innovation within the community. Unique focal planes that are rapid-prototyped, low cost, and provide high resolution are key.

In this

The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid innovation within the community. Unique focal planes that are rapid-prototyped, low cost, and provide high resolution are key.

In this dissertation the emergent designs of three unique focal planes are discussed. These focal planes were each designed for a different astronomical platform: suborbital balloon, suborbital rocket, and ground-based observatory. The balloon-based payload is a hexapod-actuated focal plane that uses tip-tilt motion to increase angular resolution through the removal of jitter – known as the HExapod Resolution-Enhancement SYstem (HERESY), the suborbital rocket imaging payload is a Jet Propulsion Laboratory (JPL) delta-doped charge-coupled device (CCD) packaged to survive the rigors of launch and image far-ultra-violet (FUV) spectra, and the ground-based observatory payload is a star centroid tracking modification to the balloon version of HERESY for the tip-tilt correction of atmospheric turbulence.

The design, construction, verification, and validation of each focal plane payload is discussed in detail. For HERESY’s balloon implementation, pointing error data from the Stratospheric Terahertz Observatory (STO) Antarctic balloon mission was used to form an experimental lab test setup to demonstrate the hexapod can eliminate jitter in flight-like conditions. For the suborbital rocket focal plane, a harsh set of unit-level tests to ensure the payload could survive launch and space conditions, as well as the characterization and optimization of the JPL detector, are detailed. Finally, a modification of co-mounting a fast-read detector to the HERESY focal plane, for use on ground-based observatories, intended to reduce atmospherically induced tip-tilt error through the centroid tracking of bright natural guidestars, is described.
ContributorsMiller, Alexander Duke (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Committee member) / Mauskopf, Philip (Committee member) / Jacobs, Daniel (Committee member) / Butler, Nathaniel (Committee member) / Arizona State University (Publisher)
Created2019