Matching Items (219)
151703-Thumbnail Image.png
Description
The repertoire of the saxophone has advanced significantly since its invention circa 1840. Performers are required to adapt to the demands of composers - many of whom are exploring new and unconventional sounds and techniques. Numerous texts exist to identify and explain these so-called "extended" techniques, but there are very

The repertoire of the saxophone has advanced significantly since its invention circa 1840. Performers are required to adapt to the demands of composers - many of whom are exploring new and unconventional sounds and techniques. Numerous texts exist to identify and explain these so-called "extended" techniques, but there are very few resources for the initial stages of performance. In order to offer performers a resource, the author of this text composed forty original etudes (or studies) that incorporate extended techniques in a variety of ways. After identifying common extended techniques that a performer might face, the author focused on four different ways each individual technique might appear in actual repertoire. The resulting work is entitled Pushing Boundaries: Forty Etudes on Extended Techniques. Each etude offers a practical approach to what is generally a single extended technique. Although this text is not pedagogical in the sense of identifying the mechanics and anatomical requirements of each technique, it does contain a performance analysis of each etude. This analysis identifies areas where performers might struggle and offers helpful suggestions. To this end, the etudes accompanied by performance analysis provide a paced, systematic approach to the mastery of each technique.
ContributorsMurphy, Patrick Joseph (Author) / Hill, Gary (Thesis advisor) / Spring, Robert (Committee member) / McAllister, Timothy (Committee member) / Micklich, Albie (Committee member) / DeMars, James (Committee member) / Arizona State University (Publisher)
Created2013
Description
CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some

CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some features of video game design that relate to this project are considered, and some specifics of hardware implementation are addressed.
ContributorsPeterson, Julian (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Levy, Benjamin (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
151715-Thumbnail Image.png
Description
This philosophical inquiry explores the work of philosophers Gilles Deleuze and Félix Guattari and posits applications to music education. Through the concepts of multiplicities, becoming, bodies without organs, smooth spaces, maps, and nomads, Deleuze and Guattari challenge prior and current understandings of existence. In their writings on art, education, and

This philosophical inquiry explores the work of philosophers Gilles Deleuze and Félix Guattari and posits applications to music education. Through the concepts of multiplicities, becoming, bodies without organs, smooth spaces, maps, and nomads, Deleuze and Guattari challenge prior and current understandings of existence. In their writings on art, education, and how might one live, they assert a world consisting of variability and motion. Drawing on Deleuze and Guattari's emphasis on time and difference, I posit the following questions: Who and when are we? Where are we? When is music? When is education? Throughout this document, their philosophical figuration of a rhizome serves as a recurring theme, highlighting the possibilities of complexity, diverse connections, and continual processes. I explore the question "When and where are we?" by combining the work of Deleuze and Guattari with that of other authors. Drawing on these ideas, I posit an ontology of humans as inseparably cognitive, embodied, emotional, social, and striving multiplicities. Investigating the question "Where are we?" using Deleuze and Guattari's writings as well as that of contemporary place philosophers and other writers reveals that humans exist at the continually changing confluence of local and global places. In order to engage with the questions "When is music?" and "When is education?" I inquire into how humans as cognitive, embodied, emotional, social, and striving multiplicities emplaced in a glocalized world experience music and education. In the final chapters, a philosophy of music education consisting of the ongoing, interconnected processes of complicating, considering, and connecting is proposed. Complicating involves continually questioning how humans' multiple inseparable qualities and places integrate during musical and educative experiences. Considering includes imagining the multiple directions in which connections might occur as well as contemplating the quality of potential connections. Connecting involves assisting students in forming variegated connections between themselves, their multiple qualities, and their glocal environments. Considering a rhizomatic philosophy of music education includes continually engaging in the integrated processes of complicating, considering, and connecting. Through such ongoing practices, music educators can promote flourishing in the lives of students and the experiences of their multiple communities.
ContributorsRicherme, Lauren Kapalka (Author) / Stauffer, Sandra (Thesis advisor) / Gould, Elizabeth (Committee member) / Schmidt, Margaret (Committee member) / Sullivan, Jill (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
152134-Thumbnail Image.png
Description
Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant,

Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant, expressing my mother's cheerful personality when she was alive. It also portrays bright summer days which resemble my mother's spirit. Thus, soundscape plays an important role in this work. It depicts summer breeze, rustling sounds of leaves, and, to translate a Korean saying, "high blue skies." This soundscape opens the piece as well as closes it. In the middle section, the fast upbeat themes represent my mother's witty and optimistic personality. The piece also contains the presence of a hymn tune, The Love of God is Greater Far, which informs the motivic content and also functions as the climax of the piece. It was my mother's favorite hymn and we used to sing it together following her conversion to Christianity. The piece contains three main sections, which are held together by transitional material based on the soundscape and metric modulations. Unlike my earlier works, Bright Summer is tonal, with upper tertian harmonies prevailing throughout the piece. However, the opening and closing soundscapes do not have functional harmonies. For example, tertian chords appear and vanish silently, leaving behind some resonant sounds without any harmonic progression. Overall, the whole piece is reminiscent of my mother who lived a beautiful life.
ContributorsKim, JeeYeon (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Rogers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152255-Thumbnail Image.png
Description
Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept,

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.
ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2013
151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
151795-Thumbnail Image.png
Description
Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to

Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to letting sound evolve freely, different movements revolve around different sounds and sound producing techniques.
ContributorsDori, Gil (Contributor) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151665-Thumbnail Image.png
Description
Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz

Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz players and teachers, private studio instructors, current university students majoring in jazz, and university and college jazz faculty, I developed a composite sketch of a secondary school student learning to play jazz. Using arts-based educational research methods, including the use of narrative inquiry and literary non-fiction, the status of current jazz education and the experiences by novice jazz learners is explored. What emerges is a complex story of students and teachers negotiating the landscape of jazz in and out of early twenty-first century public schools. Suggestions for enhancing jazz experiences for all stakeholders follow, focusing on access and the preparation of future jazz teachers.
ContributorsKelly, Keith B (Author) / Stauffer, Sandra (Thesis advisor) / Tobias, Evan (Committee member) / Kocour, Michael (Committee member) / Sullivan, Jill (Committee member) / Schmidt, Margaret (Committee member) / Arizona State University (Publisher)
Created2013
151353-Thumbnail Image.png
Description
TWO POEMS OF THE SONG DYNASTY is an original composition for soprano voice and orchestra. The duration of this two-movement work is approximately 10 minutes. The instrumentation is: Flute 1, 2, Oboe 1, 2 (doubling English Horn), Clarinet in Bb 1-2, Bassoon 1-2, Trumpet in Bb 1-3, Horn in F

TWO POEMS OF THE SONG DYNASTY is an original composition for soprano voice and orchestra. The duration of this two-movement work is approximately 10 minutes. The instrumentation is: Flute 1, 2, Oboe 1, 2 (doubling English Horn), Clarinet in Bb 1-2, Bassoon 1-2, Trumpet in Bb 1-3, Horn in F 1 - 4, Tenor Trombone 1-2 , Bass Trombone, Tuba, Timpani, Vibraphone, Cymbals, Triangle and Strings. This piece is of moderate difficulty; to be sung in Chinese with elements of sprechstimme and a vocal range from C4 to A5. The two movements, "Sheng Sheng Man" and "Yong Yu Le" refer to old poetic forms from the Song Dynasty (1127-1279). The poets Li Qingzhao and Xin Qiji provide contrasting laments for the wars of their time; the first is an introverted metaphor of sorrow and the second is a more explicit recollection of old times.
ContributorsJiang, Yang, M.M (Composer) / DeMars, James (Thesis advisor) / Rodgers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Arizona State University (Publisher)
Created2012
151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012