Matching Items (435)
150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
150026-Thumbnail Image.png
Description
As pointed out in the keynote speech by H. V. Jagadish in SIGMOD'07, and also commonly agreed in the database community, the usability of structured data by casual users is as important as the data management systems' functionalities. A major hardness of using structured data is the problem of easily

As pointed out in the keynote speech by H. V. Jagadish in SIGMOD'07, and also commonly agreed in the database community, the usability of structured data by casual users is as important as the data management systems' functionalities. A major hardness of using structured data is the problem of easily retrieving information from them given a user's information needs. Learning and using a structured query language (e.g., SQL and XQuery) is overwhelmingly burdensome for most users, as not only are these languages sophisticated, but the users need to know the data schema. Keyword search provides us with opportunities to conveniently access structured data and potentially significantly enhances the usability of structured data. However, processing keyword search on structured data is challenging due to various types of ambiguities such as structural ambiguity (keyword queries have no structure), keyword ambiguity (the keywords may not be accurate), user preference ambiguity (the user may have implicit preferences that are not indicated in the query), as well as the efficiency challenges due to large search space. This dissertation performs an expansive study on keyword search processing techniques as a gateway for users to access structured data and retrieve desired information. The key issues addressed include: (1) Resolving structural ambiguities in keyword queries by generating meaningful query results, which involves identifying relevant keyword matches, identifying return information, composing query results based on relevant matches and return information. (2) Resolving structural, keyword and user preference ambiguities through result analysis, including snippet generation, result differentiation, result clustering, result summarization/query expansion, etc. (3) Resolving the efficiency challenge in processing keyword search on structured data by utilizing and efficiently maintaining materialized views. These works deliver significant technical contributions towards building a full-fledged search engine for structured data.
ContributorsLiu, Ziyang (Author) / Chen, Yi (Thesis advisor) / Candan, Kasim S (Committee member) / Davulcu, Hasan (Committee member) / Jagadish, H V (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as

The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as part of a program showcasing music for oboe and percussion. Included in this document is a detailed biography of the composer, a description of the four movements of Forecast, performance notes for each movement, a diagram for stage set-up, the full score, the program from the premiere performance with biographies of all the performers involved, and both a live recording and MIDI sound file. The performance notes discuss issues that arose during preparation for the premiere and should help avoid potential pitfalls. TrevCo Music, publisher of the work, graciously allowed inclusion of the full score. This score is solely for use in this document; please visit the publisher's website for purchasing information. The commission and documentation of this composition are intended to add to the repertoire for oboe in an unusual instrument pairing and to encourage further exploration of such combinations.
ContributorsCreamer, Caryn (Author) / Schuring, Martin (Thesis advisor) / Hill, Gary (Committee member) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149794-Thumbnail Image.png
Description
Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. To validate these approaches in a disease-specific context, we built a schizophreniaspecific network based on the inferred associations and performed a comprehensive prioritization of human genes with respect to the disease. These results are expected to be validated empirically, but computational validation using known targets are very positive.
ContributorsLee, Jang (Author) / Gonzalez, Graciela (Thesis advisor) / Ye, Jieping (Committee member) / Davulcu, Hasan (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Arizona State University (Publisher)
Created2011
150358-Thumbnail Image.png
Description
During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music

During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music beginning in 1970. The lack of exposure and distribution of the Latin American repertoire has created a general perception that composers are not interested in the instrument, and that Latin American repertoire for classical saxophone is minimal. However, there are more than 1100 works originally written for saxophone in the region, and the amount continues to grow. This Modern Latin American Repertoire for Classical Saxophone: Recording Project and Performance Guide document establishes and exhibits seven works by seven representative Latin American composers.The recording includes works by Carlos Gonzalo Guzman (Colombia), Ricardo Tacuchian (Brazil), Roque Cordero (Panama), Luis Naón (Argentina), Andrés Alén-Rodriguez (Cuba), Alejandro César Morales (Mexico) and Jose-Luis Maúrtua (Peru), featuring a range of works for solo alto saxophone to alto saxophone with piano, alto saxophone with vibraphone, and tenor saxophone with electronic tape; thus forming an important selection of Latin American repertoire. Complete recorded performances of all seven pieces are supplemented by biographical, historical, and performance practice suggestions. The result is a written and audio guide to some of the most important pieces composed for classical saxophone in Latin America, with an emphasis on fostering interest in, and research into, composers who have contributed in the development and creation of the instrument in Latin America.
ContributorsOcampo Cardona, Javier Andrés (Author) / McAllister, Timothy (Thesis advisor) / Spring, Robert (Committee member) / Hill, Gary (Committee member) / Pilafian, Sam (Committee member) / Rogers, Rodney (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
149907-Thumbnail Image.png
Description
Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is to identify these few matches within the incoming deluge of data. In many applications, such as stock market analysis and

Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is to identify these few matches within the incoming deluge of data. In many applications, such as stock market analysis and user credit card purchase pattern monitoring, however the matches to the user queries are in fact plentiful and the system has to efficiently sift through these many matches to locate only the few most preferable matches. In this work, we propose a complex pattern ranking (CPR) framework for specifying top-k pattern queries over streaming data, present new algorithms to support top-k pattern queries in data streaming environments, and verify the effectiveness and efficiency of the proposed algorithms. The developed algorithms identify top-k matching results satisfying both patterns as well as additional criteria. To support real-time processing of the data streams, instead of computing top-k results from scratch for each time window, we maintain top-k results dynamically as new events come and old ones expire. We also develop new top-k join execution strategies that are able to adapt to the changing situations (e.g., sorted and random access costs, join rates) without having to assume a priori presence of data statistics. Experiments show significant improvements over existing approaches.
ContributorsWang, Xinxin (Author) / Candan, K. Selcuk (Thesis advisor) / Chen, Yi (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
149695-Thumbnail Image.png
Description
Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized views over structured heterogeneous data sources to support multiple query

Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized views over structured heterogeneous data sources to support multiple query optimization in a distributed event stream processing framework that supports such applications involving various query expressions for detecting events, monitoring conditions, handling data streams, and querying data. Materialized views store the results of the computed view so that subsequent access to the view retrieves the materialized results, avoiding the cost of recomputing the entire view from base data sources. Using a service-based metadata repository that provides metadata level access to the various language components in the system, a heuristics-based algorithm detects the common subexpressions from the queries represented in a mixed multigraph model over relational and structured XML data sources. These common subexpressions can be relational, XML or a hybrid join over the heterogeneous data sources. This research examines the challenges in the definition and materialization of views when the heterogeneous data sources are retained in their native format, instead of converting the data to a common model. LINQ serves as the materialized view definition language for creating the view definitions. An algorithm is introduced that uses LINQ to create a data structure for the persistence of these hybrid views. Any changes to base data sources used to materialize views are captured and mapped to a delta structure. The deltas are then streamed within the framework for use in the incremental update of the materialized view. Algorithms are presented that use the magic sets query optimization approach to both efficiently materialize the views and to propagate the relevant changes to the views for incremental maintenance. Using representative scenarios over structured heterogeneous data sources, an evaluation of the framework demonstrates an improvement in performance. Thus, defining the LINQ-based materialized views over heterogeneous structured data sources using the detected common subexpressions and incrementally maintaining the views by using magic sets enhances the efficiency of the distributed event stream processing environment.
ContributorsChaudhari, Mahesh Balkrishna (Author) / Dietrich, Suzanne W (Thesis advisor) / Urban, Susan D (Committee member) / Davulcu, Hasan (Committee member) / Chen, Yi (Committee member) / Arizona State University (Publisher)
Created2011
149808-Thumbnail Image.png
Description
Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic

Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic scale in sixteenth notes, at sixty quarter-note beats per minute, three times, with a metronome and a short pause between repetitions, and forming three pedagogical hand postures. Following the CyberGloves® tasks, each subject completed a questionnaire about equipment, playing history, practice routines, health practices, and hand usage during computer and sports activities. CyberGlove® data were analyzed to find average hand/finger postures and differences for each pitch across subjects, subject variance in the performance task and differences in ascending and descending postures of the chromatic scale. The data were also analyzed to describe generalized finger posture characteristics based on hand size, whether right hand thumb position affects finger flexion, and whether professional clarinetists use similar finger/hand postures when performing on clarinet, holding a tennis ball, allowing hands to hang freely by the sides, or form a "C" shape. The findings of this study suggest an individual approach based on hand size is necessary for teaching clarinet hand posture.
ContributorsHarger, Stefanie (Author) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Stauffer, Sandy (Committee member) / Arizona State University (Publisher)
Created2011
Description
Owen Middleton (b. 1941) enjoys an established and growing reputation as a composer of classical guitar music, but his works for piano are comparatively little known. The close investigation offered here of Middleton's works for piano reveals the same impressive craftsmanship, compelling character, and innovative spirit found in his works

Owen Middleton (b. 1941) enjoys an established and growing reputation as a composer of classical guitar music, but his works for piano are comparatively little known. The close investigation offered here of Middleton's works for piano reveals the same impressive craftsmanship, compelling character, and innovative spirit found in his works for guitar. Indeed, the only significant thing Middleton's piano music currently lacks is the well-deserved attention of professional players and a wider audience. Middleton's piano music needs to be heard, not just discussed, so one of this document's purposes is to provide a recorded sample of his piano works. While the overall repertoire for solo piano is vast, and new works become established in that repertoire with increasing difficulty, Middleton's piano works have a significant potential to find their way into the concert hall as well as the private teaching studio. His solo piano music is highly effective, well suited to the instrument, and, perhaps most importantly, fresh sounding and truly original. His pedagogical works are of equal value. Middleton's piano music offers something for everyone: there one finds daring virtuosity, effusions of passion, intellectual force, colorful imagery, poetry, humor, and even a degree of idiomatic innovation. This study aims to reveal key aspects of the composer's musical style, especially his style of piano writing, and to provide pianists with helpful analytical, technical, and interpretive insights. These descriptions of the music are supported with recorded examples, selected from the works for solo piano written between 1962 and 1993: Sonata for Piano, Childhood Scenes, Katie's Collection, and Toccata for Piano. The complete scores of the recorded works are included in the appendix. A chapter briefly describing the piano pieces since 1993 concludes the study and invites the reader to further investigations of this unique and important body of work.
ContributorsMoreau, Barton Andrew (Author) / Hamilton, Robert (Thesis advisor) / Holbrook, Amy (Committee member) / Campbell, Andrew (Committee member) / Spring, Robert (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
150212-Thumbnail Image.png
Description
This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management

This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management systems (DBMS). Also, unlike other client-driven work, this approach provides support for a richer set of schema updates including vertical split (normalization), horizontal split, vertical and horizontal merge (union), difference and intersection. The update process automatically generates a runtime update client from a mapping between the old the new schemas. The solution has been validated by testing it on a relatively small database of around 300,000 records per table and less than 1 Gb, but with limited memory buffer size of 24 Mb. This thesis presents the study of the overhead of the update process as a function of the transaction rates and the batch size used to copy data from the old to the new schema. It shows that the overhead introduced is minimal for medium size applications and that the update can be achieved with no more than one minute of downtime.
ContributorsTyagi, Preetika (Author) / Bazzi, Rida (Thesis advisor) / Candan, Kasim S (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011