Matching Items (48)
161300-Thumbnail Image.png
Description
Increase in the usage of Internet of Things(IoT) devices across physical systems has provided a platform for continuous data collection, real-time monitoring, and extracting useful insights. Limited computing power and constrained resources on the IoT devices has driven the physical systems to rely on external resources such as cloud computing

Increase in the usage of Internet of Things(IoT) devices across physical systems has provided a platform for continuous data collection, real-time monitoring, and extracting useful insights. Limited computing power and constrained resources on the IoT devices has driven the physical systems to rely on external resources such as cloud computing for handling compute-intensive and data-intensive processing. Recently, physical environments have began to explore the usage of edge devices for handling complex processing. However, these environments may face many challenges suchas uncertainty of device availability, uncertainty of data relevance, and large set of geographically dispersed devices. This research proposes the design of a reliable distributed management system that focuses on the following objectives: 1. improving the success rate of task completion in uncertain environments. 2. enhancing the reliability of the applications and 3. support latency sensitive applications. Main modules of the proposed system include: 1. A novel proactive user recruitment approach to improve the success rate of the task completion. 2.Contextual data acquisition and integration of false data detection for enhancing the reliability of the applications. 3. Novel distributed management of compute resources for achieving real-time monitoring and to support highly responsive applications. User recruitment approaches select the devices for offloading computation. Proposed proactive user recruitment module selects an optimized set of devices that match the resource requirements of the application. Contextual data acquisition module banks on the contextual requirements for identifying the data sources that are more useful to the application. Proposed reliable distributed management system can be used as a framework for offloading the latency sensitive applications across the volunteer computing edge devices.
ContributorsCHAKATI, VINAYA (Author) / Gupta, Sandeep K.S (Thesis advisor) / Dasgupta, Partha (Committee member) / Banerjee, Ayan (Committee member) / Pal, Anamitra (Committee member) / Kumar, Karthik (Committee member) / Arizona State University (Publisher)
Created2021
161998-Thumbnail Image.png
Description
In recent years, brain signals have gained attention as a potential trait for biometric-based security systems and laboratory systems have been designed. A real-world brain-based security system requires to be usable, accurate, and robust. While there have been developments in these aspects, there are still challenges to be met. With

In recent years, brain signals have gained attention as a potential trait for biometric-based security systems and laboratory systems have been designed. A real-world brain-based security system requires to be usable, accurate, and robust. While there have been developments in these aspects, there are still challenges to be met. With regard to usability, users need to provide lengthy amount of data compared to other traits such as fingerprint and face to get authenticated. Furthermore, in the majority of works, medical sensors are used which are more accurate compared to commercial ones but have a tedious setup process and are not mobile. Performance wise, the current state-of-art can provide acceptable accuracy on a small pool of users data collected in few sessions close to each other but still falls behind on a large pool of subjects over a longer time period. Finally, a brain security system should be robust against presentation attacks to prevent adversaries from gaining access to the system. This dissertation proposes E-BIAS (EEG-based Identification and Authentication System), a brain-mobile security system that makes contributions in three directions. First, it provides high performance on signals with shorter lengths collected by commercial sensors and processed with lightweight models to meet the computation/energy capacity of mobile devices. Second, to evaluate the system's robustness a novel presentation attack was designed which challenged the literature's presumption of intrinsic liveness property for brain signals. Third, to bridge the gap, I formulated and studied the brain liveness problem and proposed two solution approaches (model-aware & model agnostic) to ensure liveness and enhance robustness against presentation attacks. Under each of the two solution approaches, several methods were suggested and evaluated against both synthetic and manipulative classes of attacks (a total of 43 different attack vectors). Methods in both model-aware and model-agnostic approaches were successful in achieving an error rate of zero (0%). More importantly, such error rates were reached in face of unseen attacks which provides evidence of the generalization potentials of the proposed solution approaches and methods. I suggested an adversarial workflow to facilitate attack and defense cycles to allow for enhanced generalization capacity for domains in which the decision-making process is non-deterministic such as cyber-physical systems (e.g. biometric/medical monitoring, autonomous machines, etc.). I utilized this workflow for the brain liveness problem and was able to iteratively improve the performance of both the designed attacks and the proposed liveness detection methods.
ContributorsSohankar Esfahani, Mohammad Javad (Author) / Gupta, Sandeep K.S. (Thesis advisor) / Santello, Marco (Committee member) / Dasgupta, Partha (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2021
153551-Thumbnail Image.png
Description
An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems

An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings.

This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.
ContributorsKarizi, Nasim (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Dasgupta, Partha (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2015
165085-Thumbnail Image.png
Description
Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.
ContributorsHer, Zachary (Author) / Walker, Elizabeth (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165086-Thumbnail Image.png
Description

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.

ContributorsWalker, Elizabeth (Author) / Her, Zachary (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
151004-Thumbnail Image.png
Description
The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.
ContributorsNair, Apurva Aravindakshan (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2012
151006-Thumbnail Image.png
Description
The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities

The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities between Java and Android, the integration of module system and service platform from OSGi to Android system attracts more and more attention. How to make OSGi run in Android is a hot topic, further, how to find a mechanism to enable communication between OSGi and Android system is a more advanced area than simply making OSGi running in Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture) and CBA (Component Based Architecture), proposed a solution on integrating Felix OSGi platform with Android system in order to build up Distributed OSGi framework between mobile phones upon XMPP protocol. And in this paper, it not only successfully makes OSGi run on Android, but also invents a mechanism that makes a seamless collaboration between these two platforms.
ContributorsDong, Xinyi (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
192577-Thumbnail Image.png
Description

American Sign Language (ASL) is used for Deaf and Hard of Hearing (DHH) individuals to communicate and learn in a classroom setting. In ASL, fingerspelling and gestures are two primary components used for communication. Fingerspelling is commonly used for words that do not have a specifically designated sign or gesture.

American Sign Language (ASL) is used for Deaf and Hard of Hearing (DHH) individuals to communicate and learn in a classroom setting. In ASL, fingerspelling and gestures are two primary components used for communication. Fingerspelling is commonly used for words that do not have a specifically designated sign or gesture. In technical contexts, such as Computer Science curriculum, there are many technical terms that fall under this category. Most of its jargon does not have standardized ASL gestures; therefore, students, educators, and interpreters alike have been reliant on fingerspelling, which poses challenges for all parties. This study investigates the efficacy of both fingerspelling and gestures with fifteen technical terms that do have standardized gestures. The terms’ fingerspelling and gesture are assessed based on preference, ease of use, ease of learning, and time by research subjects who were selected as DHH individuals familiar with ASL.

The data is collected in a series of video recordings by research subjects as well as a post-participation questionnaire. Each research subject has produced thirty total videos, two videos to fingerspell and gesture each technical term. Afterwards, they completed a post-participation questionnaire in which they indicated their preference and how easy it was to learn and use both fingerspelling and gestures. Additionally, the videos have been analyzed to determine the time difference between fingerspelling and gestures. Analysis reveals that gestures are favored over fingerspelling as they are generally preferred, considered easier to learn and use, and faster. These results underscore the significance for standardized gestures in the Computer Science curriculum for accessible learning that enhances communication and promotes inclusion.

ContributorsKarim, Bushra (Author) / Gupta, Sandeep (Thesis director) / Hossain, Sameena (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2024-05