Matching Items (6)
Filtering by

Clear all filters

132184-Thumbnail Image.png
Description
Cervical cancer, which many physicians of 2019 consider to be a success in terms of establishing widely used forms of early preventative and diagnostic technologies, experienced a reduction in incidence rates in women by over fifty percent between 1975 and 2016. Cervical cancer does not often present in women with

Cervical cancer, which many physicians of 2019 consider to be a success in terms of establishing widely used forms of early preventative and diagnostic technologies, experienced a reduction in incidence rates in women by over fifty percent between 1975 and 2016. Cervical cancer does not often present in women with symptoms until it has entered a later stage of the disease. Because of this fact, in the early twentieth century, physicians were often only able to diagnose cervical cancer when either the woman reported complaints or there was a visual confirmation of lesions on the cervix. The symptoms women often reported included vague abdominal pain, bleeding after sex, and abnormal amounts of vaginal discharge, all of which are non-specific symptoms, making it even harder for women to be diagnosed with cervical cancer. This thesis answers the following question: How does the history of cervical cancer show that prevention helps reduce rates of cancer-related deaths among women? By studying the history of cervical cancer, people can understand how a cancer that was once one of the top killers of women in the US has declined to become one of the lowest through the establishment of and effective communication of early prevention and diagnostics, both among the general public and within the medical community itself. This thesis is organized based on key episodes which were pertinent to the history of cervical cancer, primarily within the United States and Europe. The episodes are organized in context of the shifts in thought regarding cervical cancer and include topics such as vaccine technologies like the Gardasil and Cervarix vaccines, social awareness movements that educated women on the importance of early detection, and analyses of the early preventative strategies and attempts at treating cervical cancer. After analyzing eleven key episodes, the thesis determined that, through the narrative of early attempts to treat cervical cancer, shifting the societal thought on cancer, evolving the importance of early detection, and, finally, obtaining a means of prevention, the history of cervical cancer does demonstrate that the development of preventative strategies has resulted in reducing cancer-related deaths among women. Understanding what it took for physicians to evolve from simply detecting cervical cancer to being able to prevent it entirely matters because it can change the way we think about managing other forms of cancer.
ContributorsDarby, Alexis Renee (Co-author) / Darby, Alexis (Co-author) / Maienschein, Jane (Thesis director) / Abboud, Carolina (Committee member) / Ellison, Karin (Committee member) / School of Life Sciences (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132674-Thumbnail Image.png
Description
Background: Endometriosis is a condition characterized by the growth of the endometrium, or the tissue that lines the uterus, outside of the uterus, and it is diagnosed through the presence of endometriotic lesions in the pelvic region. The disease is most often associated with abnormal and painful vaginal bleeding. Currently,

Background: Endometriosis is a condition characterized by the growth of the endometrium, or the tissue that lines the uterus, outside of the uterus, and it is diagnosed through the presence of endometriotic lesions in the pelvic region. The disease is most often associated with abnormal and painful vaginal bleeding. Currently, minimal literature exists concerning the management of endometriosis in low and middle-income countries (LMICs), which may influence the lack of a cultural competent understanding of menstruation in LMICs and, therefore, a lack of evidence-based policies concerning menstruation.

Methods: Social and cultural barriers influencing endometriosis reporting and management in LMICs were examined through a systematic literature review. Online databases yielded a list of relevant studies. Then, use of MAXQDA, a qualitative data analysis software program, helped to extract and code specific text segments from each study that pertain to the research topic. In-context analysis of coded segments revealed the most common trends, which were organized into broader themes.

Results: Findings demonstrated that social and cultural ideas regarding vaginal bleeding influenced the lack of disease reporting and management of endometriosis in LMICs. Socioeconomic challenges include a lack of hygiene and sanitation measures and education regarding menstruation and vaginal bleeding. Also, many diseases associated with the abnormal vaginal bleeding are often disregarded and not prioritized in clinical settings. It also became clear that cultural taboos regarding menstruation and vaginal bleeding often create feelings of anxiety and fear in women and girls throughout communities in LMICs. However, further research is needed to examine the ways in which women in those communities treat symptoms of irregular vaginal bleeding related to endometriosis.

Conclusions: Socioeconomic, gender, and sex-related factors may influence the ways in which endometriosis is reported and treated and may affect the way the related diseases are understood. Evidence-based policies using a culturally competent understanding of abnormal vaginal bleeding in LMICs may help positively affect the reproductive health of women and girls in such areas.
ContributorsSantora, Emily (Author) / Maienschein, Jane (Thesis director) / Abboud, Carolina (Committee member) / Hagaman, Ashley (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
129333-Thumbnail Image.png
Description

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3′UTRs, called Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE). We demonstrate the feasibility of 3′LIFE using a data set of 275 human 3′UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3′LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput.

ContributorsWolter, Justin (Author) / Kotagama, Kasuen (Author) / Pierre-Bez, Alexandra C. (Author) / Firago, Mari (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-29
129065-Thumbnail Image.png
Description

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated.

Results: MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip.

Conclusions: Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.

ContributorsHutchins, Elizabeth (Author) / Eckalbar, Walter (Author) / Wolter, Justin (Author) / Mangone, Marco (Author) / Kusumi, Kenro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-05
129101-Thumbnail Image.png
Description

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publicly available through gene repositories at low cost to all scientists with minimal restriction.

Results: The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease.

Conclusions: The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology.

ContributorsKotagama, Kasuen (Author) / Babb, Cody (Author) / Wolter, Justin (Author) / Murphy, Ronan P. (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128433-Thumbnail Image.png
Description

MicroRNAs (miRNAs) regulate gene output by targeting degenerate elements in mRNAs and have undergone drastic expansions in higher metazoan genomes. The evolutionary advantage of maintaining copies of highly similar miRNAs is not well understood, nor is it clear what unique functions, if any, miRNA family members possess. Here, we study

MicroRNAs (miRNAs) regulate gene output by targeting degenerate elements in mRNAs and have undergone drastic expansions in higher metazoan genomes. The evolutionary advantage of maintaining copies of highly similar miRNAs is not well understood, nor is it clear what unique functions, if any, miRNA family members possess. Here, we study evolutionary patterns of metazoan miRNAs, focusing on the targeting preferences of the let-7 and miR-10 families. These studies reveal hotspots for sequence evolution with implications for targeting and secondary structure. High-throughput screening for functional targets reveals that each miRNA represses sites with distinct features and regulates a large number of genes with cooperative function in regulatory networks. Unexpectedly, given the high degree of similarity, single-nucleotide changes grant miRNA family members with distinct targeting preferences. Together, our data suggest complex functional relationships among miRNA duplications, novel expression patterns, sequence change, and the acquisition of new targets.

ContributorsWolter, Justin (Author) / Le, Hoai Huang Thi (Author) / Linse, Alexander (Author) / Godlove, Victoria (Author) / Nguyen, Thuy-Duyen (Author) / Kotagama, Kasuen (Author) / Lynch, Cherie Alissa (Author) / Rawls, Alan (Author) / Mangone, Marco (Author) / Biodesign Institute (Contributor)
Created2016-12-07