Matching Items (1)
Filtering by

Clear all filters

131823-Thumbnail Image.png
Description
Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving the protein kinase RIPK3. In response to vaccinia virus infection, necroptosis acts through RIPK3 and the adaptor

Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving the protein kinase RIPK3. In response to vaccinia virus infection, necroptosis acts through RIPK3 and the adaptor protein DAI to inhibit further viral replication in host cells. Stress granules are accumulations of mRNAs that have stalled in translation due to cellular stress. The toxin arsenite is a canonical inducer of stress granule formation and can cause necroptosis. By initiating necroptosis with arsenite and vaccinia virus, this research project investigated the roles of necroptosis proteins and their localizations into stress granules. The two aims of this research project were to determine if stress granules are important for arsenite-induced necroptosis, and whether the proteins DAI, RIPK3, MLKL, and G3BP localize into stress granules. The first aim was investigated by establishing a DAI and RIPK3 expression system in U2OS cells; arsenite was then used to treat the U2OS cells as well as U2OSΔG3BP cells, which are not able to form stress granules. The second aim was carried out by designing fluorescent tagging for the necroptosis proteins in order to visualize protein localization with fluorescent microscopy. The results showed that arsenite induces DAI-dependent necroptosis in U2OS cells and that this arsenite-induced necroptosis requires stress granules. In addition, it was determined that vaccinia virus induces DAI-dependent necroptosis that also requires stress granules. This project contributes to a greater understanding of the roles of DAI and RIPK3 in necroptosis, as well as the roles of stress granules in necroptosis, both of which are important in research regarding viral infection and cellular stress.
ContributorsGogerty, Carolina (Author) / Jacobs, Bertram (Thesis director) / Langland, Jeffrey (Committee member) / Jentarra, Garilyn (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05