Matching Items (146)
Filtering by

Clear all filters

136686-Thumbnail Image.png
Description
Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear

Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear recruitment pattern where a leading ant uses a short-ranged pheromone to direct a following ant to a target location (in tandem).The observed phenomenon of reverse tandem running (RTR), where a follower is lead from a target back to the home nest, has not been as extensively studied as forward tandem running and transportation recruitment activities. This study seeks to explain a potential reason for the presence of the RTR behavior; more specifically, the study explores the idea that reverse tandem run followers are being shown a specific route to the home nest by a highly experienced and efficient leading ant. Ten colonies had migrations induced experimentally in order to generate some reverse tandem running activity. Once an RTR has been observed, the follower and leader were studied for behavior and their pathways were analyzed. It was seen that while RTR paths were quite efficient (1.4x a straight line distance), followers did not experience a statistically significant improvement in their pathways between the home and target nests (based on total distance traveled) when compared to similar non-RTR ants. Further, RTR leading ants were no more efficient than other non-RTR ants. It was observed that some followers began recruiting after completion of an RTR, but the number than changed their behavior was not significant. Thus, the results of this experiment cannot conclusively show that RTR followers are utilizing reverse tandem runs to improve their routes between the home and target nests.
ContributorsColling, Blake David (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / Sasaki, Takao (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136797-Thumbnail Image.png
Description
Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system

Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system workers and queens are determined by their genotype (i.e., workers develop from interlineage crosses, queens from intralineage crosses). As such, J1 and J2 lineages are dependent on each other in order for colonies to produce both workers and reproductive queens. Given their genetic isolation and interdependence, we hypothesized that the CHCs of alate males and queens are affected by lineage, and that differences in the CHC profile are used for mate recognition. We tested these hypotheses by analyzing the lineage distributions of actively mating pairs (n=65), and compared them with the overall distribution of male and female sexuals (n=180). We additionally analyzed the five most abundant CHC compounds for 20 of the actively mating P. barbatus alate male and queen pairs to determine how variable the two lineages are between each sex. We found that mating pair distributions did not significantly differ from those expected under a random mating system (�2= 1.4349, P= 0.6973), however, CHC profiles did differ between J1 and J2 lineages and sexes for the five most abundant CHC compounds. Our results show that random mating is taking place in this population, however given the differences observed in CHC profiles, mate recognition could be taking place.
ContributorsTula Del Moral Testai, Pedro Rafael (Co-author) / Cash, Elizabeth (Co-author) / Gadau, Juergen (Thesis director) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137047-Thumbnail Image.png
Description
Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality

Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality are up for debate. These ants are adept at choosing a nest site, making a collective decision based on complex interactions between the many individual choices made by workers. Colonies will migrate between nests either upon the destruction of their current home or the discovery of a sufficiently superior nest. This study offers a descriptive analysis of the heuristics potentially used in nest-site decision-making. Colonies were offered a choice of nests characterized by the Ebbinghaus Illusion: a perceptual illusion which effectively causes the viewer to perceive a circle as larger when it is surrounded by small circles than when that same circle is surrounded by large circles. Colonies were separated into two conditions: in one, they were given the option to move to a high-quality nest surrounded by poor-quality nests, and in the other they were given the option to move to a high-quality nest surrounded by medium-quality nests. The colonies in the poor condition were found to be more likely to move to the good nest than were colonies in the medium condition at a statistically significant level. That is, they responded to the Ebbinghaus Effect in the way that is normally expected. This result was discussed in terms of its implications for the ecological rationality of the nest-site choice behavior of these ants.
ContributorsTalken, Lucas Warren (Author) / Pratt, Stephen (Thesis director) / Sasaki, Takao (Committee member) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
147692-Thumbnail Image.png
Description

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to explore what sets dominant individuals, or gamergates in this case, apart from non-dominant individuals, or non-gamergates. H. saltator ants perform various different behaviors such as dueling, which is a mutually beneficial behavior, dominance biting, which is an aggressive behavior, and policing which is used to bring down those who are dominant. These behaviors can be used to study the importance of initiation and aggression in hierarchy formation. This experiment will explore how aggression through dominance biting, duel initiation, group size, and time period affect the formation of gamergates. To do so, socially unstable colonies of 15, 30, and 60 ants were video recorded for days until gamergates were established. Then, from the recordings, a period of high activity was selected and observed for dueling, duel initiation, dominance biting, dominance bite downs, and policing. The results showed that gamergates tended to perform dominance biting and dominance bite downs far more than non-gamergates during the period of high activity, but not as clearly with duelling and duel initiations. It was inconclusive whether or not the combination of both dueling and dominance biting was what set gamergates apart from non gamergates as different groups showed different results. Gamergates performed visibly more dominance bite downs than non-gamergates, so aggression may be important in setting gamergates apart from non-gamergates. In terms of group size, the smallest group had the least number of gamergates and the least activity, and the medium and large group had a similar number of gamergates and activity.

ContributorsVarghese, Sarah (Author) / Liebig, Juergen (Thesis director) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149357-Thumbnail Image.png
Description
This project is a critical look at Chicano artist Vincent Valdez's 2002-2004 series Stations. The theoretical framework for this work is the concept of cultural citizenship, which refers to a variety of ways in which marginalized groups of people create, fight for, and retain space, identity, and rights within American

This project is a critical look at Chicano artist Vincent Valdez's 2002-2004 series Stations. The theoretical framework for this work is the concept of cultural citizenship, which refers to a variety of ways in which marginalized groups of people create, fight for, and retain space, identity, and rights within American society through acts of daily life. This research considers how the ten large-scale charcoal drawings that comprise Stations contribute to the construction and representation of distinct and unique Latino spaces and identities. Valdez establishes space in the sense of belonging and community engagement that his work allows. Within this context, thoughtful attention is paid to the cultural meaning of the artist's subject choices of boxing and religion. This research considers the significance of these subject choices and how the connections between the two create unique spaces of shared experience and consciousness for a viewer of the work. However, the parallels that Valdez draws between the Christ figure and his boxer also allow for a careful examination of the representations and contradictions of contemporary constructions of masculinity that are present in the series. Within this project, the work of Gloria Anzaldúa is critical in understanding and discussing the fluid nature of Chicano identity. This study also considers how in the tradition of Chicana writers, Valdez expresses and affirms identity through autobiographical methods. Further, the artist's use of charcoal to create these large scale drawings is considered for its narrative qualities. This study concludes that Valdez's series Stations is an act of cultural citizenship.
ContributorsStemm Patel, Shannon (Author) / Malagamba-Ansótegui, Amelia (Thesis advisor) / Mesch, Claudia (Committee member) / Sweeney, Gray (Committee member) / Arizona State University (Publisher)
Created2010
149559-Thumbnail Image.png
Description
The Indian princess began as an imposition, a Eurocentric conception based in preconceived notions of cultural structures and gendered power roles - a mixture of noble woman and provocative demure maiden - created by Anglo men to epitomize an idyllic image of otherness and womanhood. This analysis begins by exploring

The Indian princess began as an imposition, a Eurocentric conception based in preconceived notions of cultural structures and gendered power roles - a mixture of noble woman and provocative demure maiden - created by Anglo men to epitomize an idyllic image of otherness and womanhood. This analysis begins by exploring the history of the icon that was first conceived through sixteenth century explorer's tales of exotic queens then traces her progression through the romantic idealizations of the Indian woman Pocahontas. Research then explores how the character, comprised of a mixture of feathers, beads, and buckskin, was implemented into performance, and discusses how her flesh and blood enactment became critical to her survival. Drawing on the theories of contemporary critics, final examination turns to twentieth century perceptions of the Princess and reactions to her by contemporary Native artists whose manipulations of the character opens alternative dialogs about the stereotype to offer reconstructions of her historic discourse.
ContributorsHanawalt, Tammi Jo (Author) / Duncan, Kate (Thesis advisor) / Fahlman, Betsy (Committee member) / Malagamba-Ansótegui, Amelia (Committee member) / Mesch, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01