Matching Items (76)
158359-Thumbnail Image.png
Description
Volcanic eruptions can be serious geologic hazards, and have the potential to effect human life, infrastructure, and climate. Therefore, an understanding of the evolution and conditions of the magmas stored beneath volcanoes prior to their eruption is crucial for the ability to monitor such systems and develop effective hazard mitigation

Volcanic eruptions can be serious geologic hazards, and have the potential to effect human life, infrastructure, and climate. Therefore, an understanding of the evolution and conditions of the magmas stored beneath volcanoes prior to their eruption is crucial for the ability to monitor such systems and develop effective hazard mitigation plans. This dissertation combines classic petrologic tools such as mineral chemistry and thermometry with novel techniques such as diffusion chronometry and statistical modeling in order to better understand the processes and timing associated with volcanic eruptions. By examining zoned crystals from the fallout ash of Yellowstone’s most recent supereruption, my work shows that the rejuvenation of magma has the ability to trigger a catastrophic supereruption at Yellowstone caldera in the years (decades at most) prior to eruption. This provides one of the first studies to thoroughly identify a specific eruption trigger of a past eruption using the crystal record. Additionally, through experimental investigation, I created a novel diffusion chronometer with application to determine magmatic timescales in silicic volcanic systems (i.e., rhyolite/dacite). My results show that Mg-in-sanidine diffusion operates simultaneously by both a fast and slow diffusion path suggesting that experimentally-derived diffusion chronometers may be more complex than previously thought. When applying Mg-in-sanidine chronometry to zoned sanidine from the same supereruption at Yellowstone, the timing between rejuvenation and eruption is further resolved to as short as five months, providing a greater understanding of the timing of supereruption triggers. Additionally, I developed a new statistical model to examine the controls on a single volcano’s distribution of eruptions through time, therefore the controls on the timing between successive eruptions, or repose time. When examining six Cascade volcanoes with variable distribution patterns through time, my model shows these distributions are not result of sampling bias, rather may represent geologic processes. There is a robust negative correlation between average repose time and average magma composition (i.e., SiO2), suggesting this may be a controlling factor of long-term repose time at Cascade volcanoes. Together, my work provides a better vision for forecasting models to mitigate potential destruction.
ContributorsShamloo, Hannah (Author) / Till, Christy (Thesis advisor) / Hervig, Richard (Committee member) / Barboni, Melanie (Committee member) / Shock, Everett (Committee member) / Shim, Sang-Heon (Committee member) / Arizona State University (Publisher)
Created2020
158279-Thumbnail Image.png
Description
Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water

Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water at elevated temperatures, but these studies rarely explore the consequences of inorganic solutes in hydrothermal fluids. The experiments in this thesis explore new reaction pathways of organic compounds mediated by aqueous and solid phase metals, mainly Earth-abundant copper. These experiments show that copper species have the potential to oxidize benzene and toluene, which are typically viewed as unreactive. These pathways add to the growing list of known organic transformations that are possible in natural hydrothermal systems. In addition to the characterization of reactions in natural systems, there has been recent interest in using hydrothermal conditions to facilitate organic transformations that would be useful in an applied, industrial or synthetic setting. This thesis identifies two sets of conditions that may serve as alternatives to commonplace industrial processes. The first process is the oxidation of benzene with copper to form phenol and chlorobenzene. The second is the copper mediated dehalogenation of aryl halides. Both of these processes apply the concepts of geomimicry by carrying out organic reactions under Earth-like conditions. Only water and copper are needed to implement these processes and there is no need for exotic catalysts or toxic reagents.
ContributorsLoescher, Grant (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2020
Description
Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000

Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000 metal complexes of small molecules, proteins and peptides.

The estimates of metal-ligand equilibrium constants at 25°C and 1 bar were made using multiple linear free energy relationships in accordance with the metal-coordinating properties of ligands such as denticity, identity of electron donor group, inductive effects and steric hindrance. Analogous relationships were made to estimated metal-ligand complexation entropy that facilitated calculation of equilibrium constants up to 125°C using the van’t Hoff equation. These estimates were made for over 250 ligands that include carboxylic acids, phenols, inorganic acids, amino acids, peptides and proteins.

The stability constants mentioned above were used to obtain metal speciation in several microbial growth media including past bioavailability studies and compositions listed on the DSMZ website. Speciation calculations were also carried out for several metals in blood plasma and cerebrospinal fluid that include metals present at over micromolar abundance (sodium, potassium, calcium, magnesium, iron, copper and zinc) and metals of therapeutic or toxic potential (like gallium, rhodium and bismuth). Metal speciation was found to be considerably dependent on pH and chelator concentration that can help in the selection of appropriate ligands for gallium & rhodium based anticancer drugs and zinc-based antidiabetics. It was found that methanobactin can considerably alter copper speciation and is therefore a suitable agent for the treatment of Wilson Disease. Additionally, bismuth neurotoxicity was attributed to the low transferrin concentration in cerebrospinal fluid and the predominance of aqueous bismuth trihydroxide. These results demonstrate that metal speciation calculations using thermodynamic modeling can be extremely useful for understanding metal bioavailability in microbes and human bodily fluids.
ContributorsPrasad, Apar (Author) / Shock, Everett (Thesis advisor) / Trovitch, Ryan (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2019
161214-Thumbnail Image.png
Description

Sulfur oxidation is a process that is seen a wide variety of places. One particular place is Yellowstone national park where an abundance of hot springs are present. These acidic and hot places are prime locations for sulfur oxidation to occur. At a very basic level this is thought of

Sulfur oxidation is a process that is seen a wide variety of places. One particular place is Yellowstone national park where an abundance of hot springs are present. These acidic and hot places are prime locations for sulfur oxidation to occur. At a very basic level this is thought of as Sulfur, oxygen, and water forming sulfate and hydrogen. Many other reactions occur when an organism performs these processes, and many enzymes are used for this. This paper aimed to create, balance, and analyze the reactions involved in the paper Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. (Wang et al., 2019) Once these reactions were balanced thermodynamic properties were found to evaluate the Gibbs Free Energy of these reactions. This allowed for a unique energy-based view of how this web of reactions relate to each other.

ContributorsMolina, Johnathan (Author) / Shock, Everett (Thesis director) / Weeks, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2021-12
158860-Thumbnail Image.png
Description
Evaluations of chemical energy supplies for redox reactions used by chemotrophs in water-rock hosted ecosystems are often done separately from evaluations of chemotroph diversity. However, given that energy is a fundamental and unifying parameter for life, much can be gained by evaluating chemical energy as an ecological parameter of water-rock

Evaluations of chemical energy supplies for redox reactions used by chemotrophs in water-rock hosted ecosystems are often done separately from evaluations of chemotroph diversity. However, given that energy is a fundamental and unifying parameter for life, much can be gained by evaluating chemical energy as an ecological parameter of water-rock hosted ecosystems. Therefore, I developed an approach that combines evaluation of chemical energy supplies with 16S and 18S rRNA gene amplicon sequencing. I used this approach to assess drivers of microbial distribution, diversity and activity in serpentinized fluids of the Samail Ophiolite of Oman and in hot springs in Yellowstone National Park.

Through the application of the approach, microbiological interactions in serpentinized fluids were found to be more complex than anticipated. Serpentinized fluids are hyperalkaline and pH is often considered the driving parameter of microbial diversity, however hydrogenotrophic community composition varies in hyperalkaline fluids with similar pH. The composition of hydrogenotrophic communities in serpentinized fluids were found to correspond to the availability of the electron acceptor for hydrogenotrophic redox reactions. Specifically, hydrogenotrophic community composition transitions from being dominated by the hydrogenotrophic methanogen genus, Methanobacterium, when the concentration of sulfate is less than ~10 μm. Above ~10 μm, sulfate reducers are most abundant. Additionally, Methanobacterium was found to co-occur with the protist genus, Cyclidium, in serpentinized fluids. Species of Cyclidium are anaerobic and known to have methanogen endosymbionts. Therefore, Cyclidium may supply inorganic carbon evolved from fermentation to Methanobacterium, thereby mitigating pH dependent inorganic carbon limitation.

This approach also revealed possible biological mechanisms for methane oxidation in Yellowstone hot springs. Measurable rates of biological methane oxidation in hot spring sediments are likely associated with methanotrophs of the phylum, Verrucomicrobia, and the class, Alphaproteobacteria. Additionally, rates were measurable where known methanotrophs were not detected. At some of these sites, archaeal ammonia oxidizer taxa were detected. Ammonia oxidizers have been shown to be capable of methane oxidation in other systems and may be an alternative mechanism for methanotrophy in Yellowstone hot springs. At the remaining sites, uncharacterized microbial lineages may be capable of carrying out methane oxidation in Yellowstone hot springs.
ContributorsHowells, Alta Emily Gessner (Author) / Shock, Everett (Thesis advisor) / Collins, James (Committee member) / Anbar, Ariel (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Arizona State University (Publisher)
Created2020
129567-Thumbnail Image.png
Description

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

ContributorsTrenchevska, Olgica (Author) / Phillips, David A. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-06-23
129363-Thumbnail Image.png
Description

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

ContributorsNeveu, Marc (Author) / Desch, Steven (Author) / Shock, Everett (Author) / Glein, C. R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-15
128687-Thumbnail Image.png
Description

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.

ContributorsTrenchevska, Olgica (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-17
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11
128925-Thumbnail Image.png
Description

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

ContributorsDick, Jeffrey (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-08-11