Matching Items (78)
128767-Thumbnail Image.png
Description

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance.

Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.

Created2013-12-04
128774-Thumbnail Image.png
Description

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the activities of VDR and related receptors. We report that SENP1 and SENP2 strikingly potentiate ligand-mediated transactivation of VDR and also its heterodimeric partner, retinoid X receptor (RXRα) with depletion of cellular SENP1 significantly diminishing the hormonal responsiveness of the endogenous vitamin D target gene CYP24A1. We find that SENP-directed modulation of VDR activity is cell line-dependent, achieving potent modulatory effects in Caco-2 and HEK-293 cells, while in MCF-7 cells the vitamin D signal is unaffected by any tested SENP. In support of their function as novel modulators of the vitamin D hormonal pathway we demonstrate that both SENP1 and SENP2 can interact with VDR and reverse its modification with SUMO2. In a preliminary analysis we identify lysine 91, a residue known to be critical for formation and DNA binding of the VDR-RXR heterodimer, as a minor SUMO acceptor site within VDR. In combination, our results support a repressor function for SUMOylation of VDR and reveal SENPs as a novel class of VDR/RXR co-regulatory protein that significantly modulate the vitamin D response and which could also have important impact upon the functionality of both RXR-containing homo and heterodimers.

ContributorsLee, Wai-Ping (Author) / Jena, Sarita (Author) / Doherty, Declan (Author) / Ventakesh, Jaganathan (Author) / Schimdt, Joachim (Author) / Furmick, Julie (Author) / Widener, Tim (Author) / Lemau, Jana (Author) / Jurutka, Peter (Author) / Thompson, Paul D. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-02-20
128307-Thumbnail Image.png
Description

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.

ContributorsLiu, Jin (Author) / Sun, Zheng (Author) / Gerken, Henri (Author) / Liu, Zheng (Author) / Jiang, Yue (Author) / Chen, Feng (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-06-10
128123-Thumbnail Image.png
Description

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1, HSP27, GPX1, XRCC1, BAG-1, HHR23A, FAP48, and C-FOS. No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

ContributorsBarrila, Jennifer (Author) / Ott, C. Mark (Author) / LeBlanc, Carly (Author) / Mehta, Satish K. (Author) / Crabbe, Aurelie (Author) / Stafford, Phillip (Author) / Pierson, Duane L. (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-12-08
128194-Thumbnail Image.png
Description

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

ContributorsLegutki, Joseph Barten (Author) / Zhao, Zhan-Gong (Author) / Greving, Matt (Author) / Woodbury, Neal (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2014-09-03
128363-Thumbnail Image.png
Description

This study investigates the presence of dynamical patterns of interpersonal coordination in extended deceptive conversations across multimodal channels of behavior. Using a novel "devil’s advocate" paradigm, we experimentally elicited deception and truth across topics in which conversational partners either agreed or disagreed, and where one partner was surreptitiously asked to

This study investigates the presence of dynamical patterns of interpersonal coordination in extended deceptive conversations across multimodal channels of behavior. Using a novel "devil’s advocate" paradigm, we experimentally elicited deception and truth across topics in which conversational partners either agreed or disagreed, and where one partner was surreptitiously asked to argue an opinion opposite of what he or she really believed. We focus on interpersonal coordination as an emergent behavioral signal that captures interdependencies between conversational partners, both as the coupling of head movements over the span of milliseconds, measured via a windowed lagged cross correlation (WLCC) technique, and more global temporal dependencies across speech rate, using cross recurrence quantification analysis (CRQA). Moreover, we considered how interpersonal coordination might be shaped by strategic, adaptive conversational goals associated with deception. We found that deceptive conversations displayed more structured speech rate and higher head movement coordination, the latter with a peak in deceptive disagreement conversations. Together the results allow us to posit an adaptive account, whereby interpersonal coordination is not beholden to any single functional explanation, but can strategically adapt to diverse conversational demands.

Created2017-06-02
128370-Thumbnail Image.png
Description

Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well-inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of

Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well-inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of predicted rarity-weighted richness (PRWR) as a surrogate in situations where species inventories may be available for a portion of the planning area. Use of PRWR as a surrogate involves several steps. First, rarity-weighted richness (RWR) is calculated from species inventories for a q% subset of sites. Then random forest models are used to model RWR as a function of freely available environmental variables for that q% subset. This function is then used to calculate PRWR for all sites (including those for which no species inventories are available), and PRWR is used to prioritize all sites. We tested PRWR on plant and bird datasets, using the species accumulation index to measure efficiency of PRWR. Sites with the highest PRWR represented species with median efficiency of 56% (range 32%–77% across six datasets) when q = 20%, and with median efficiency of 39% (range 20%–63%) when q = 10%. An efficiency of 56% means that selecting sites in order of PRWR rank was 56% as effective as having full knowledge of species distributions in PRWR's ability to improve on the number of species represented in the same number of randomly selected sites. Our results suggest that PRWR may be able to help prioritize sites to represent species if a planner has species inventories for 10%–20% of the sites in the planning area.

Created2016-10-27
128336-Thumbnail Image.png
Description

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

ContributorsBarrila, Jennifer (Author) / Yang, Jiseon (Author) / Crabbe, Aurelie (Author) / Sarker, Shameema (Author) / Liu, Yulong (Author) / Ott, C. Mark (Author) / Nelman-Gonzalez, Mayra A. (Author) / Clemett, Simon J. (Author) / Nydam, Seth (Author) / Forsyth, Rebecca (Author) / Davis, Richard (Author) / Crucian, Brian E. (Author) / Quiriarte, Heather (Author) / Roland, Kenneth (Author) / Brenneman, Karen (Author) / Sams, Clarence (Author) / Loscher, Christine (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-02-28
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05
129653-Thumbnail Image.png
Description

Through the mathematical study of two models we quantify some of the theories of co-development and co-existence of focused groups in the social sciences. This work attempts to develop the mathematical framework behind the social sciences of community formation. By using well developed theories and concepts from ecology and epidemiology

Through the mathematical study of two models we quantify some of the theories of co-development and co-existence of focused groups in the social sciences. This work attempts to develop the mathematical framework behind the social sciences of community formation. By using well developed theories and concepts from ecology and epidemiology we hope to extend the theoretical framework of organizing and self-organizing social groups and communities, including terrorist groups. The main goal of our work is to gain insight into the role of recruitment and retention in the formation and survival of social organizations. Understanding the underlining mechanisms of the spread of ideologies under competition is a fundamental component of this work. Here contacts between core and non-core individuals extend beyond its physical meaning to include indirect interaction and spread of ideas through phone conversations, emails, media sources and other similar mean.

This work focuses on the dynamics of formation of interest groups, either ideological, economical or ecological and thus we explore the questions such as, how do interest groups initiate and co-develop by interacting within a common environment and how do they sustain themselves? Our results show that building and maintaining the core group is essential for the existence and survival of an extreme ideology. Our research also indicates that in the absence of competitive ability (i.e., ability to take from the other core group or share prospective members) the social organization or group that is more committed to its group ideology and manages to strike the right balance between investment in recruitment and retention will prevail. Thus under no cross interaction between two social groups a single trade-off (of these efforts) can support only a single organization. The more efforts that an organization implements to recruit and retain its members the more effective it will be in transmitting the ideology to other vulnerable individuals and thus converting them to believers.

Created2013-09-11