Matching Items (159)
Filtering by

Clear all filters

152438-Thumbnail Image.png
Description
Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized

Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box".
ContributorsOntiveros-Valencia, Aura (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2014
151579-Thumbnail Image.png
Description
Many students in the United States are graduating from high school without the math skills they need to be considered college ready. For many of these graduates, who find themselves starting their higher education at a community college, remedial math can become an insurmountable barrier that ends their aspirations for

Many students in the United States are graduating from high school without the math skills they need to be considered college ready. For many of these graduates, who find themselves starting their higher education at a community college, remedial math can become an insurmountable barrier that ends their aspirations for a degree or certificate. Some students must take as many as four remedial courses before they are considered college ready. Studies report that between 60% and 70% of students placed into remedial math classes either do not successfully complete the sequence of required courses or avoid taking math altogether and therefore never graduate (Bailey, Jeong, & Cho, 2010). This study compared three low-level freshman math classes in one Arizona high school. The purpose of this study was to implement an innovative learning intervention to find out if there was a causal relationship between the addition of technology with instruction in a blended learning environment and performance in math. The intervention measured growth (pre- and posttest) and grade-level achievement (district-provided benchmark test) in three Foundations of Algebra classes. The three classes ranged on a continuum with the use of technology and personalized instruction. Additionally, focus groups were conducted to better understand the challenges this population of students face when learning math. The changes in classroom practices showed no statistical significance on the student outcomes achieved. Students in a blended online environment learned the Foundations of Algebra concepts similarly to their counterparts in a traditional, face-to-face learning environment.
ContributorsBolley, Staci (Author) / Schugurensky, Daniel, 1958- (Thesis advisor) / Cruz, Heather (Committee member) / Barnett, Joshua (Committee member) / Arizona State University (Publisher)
Created2013
151361-Thumbnail Image.png
Description
The dissertation explores how participants view the relationships between democratic principles such as freedom, liberty, justice, and equality in work and home environments and their impact on the health and productivity of people living within these environments. This information can be used to determine the gap between legal democratic instruments

The dissertation explores how participants view the relationships between democratic principles such as freedom, liberty, justice, and equality in work and home environments and their impact on the health and productivity of people living within these environments. This information can be used to determine the gap between legal democratic instruments established the published laws and rights and the participants understanding and awareness of these rights. The first step in effectively capturing information from the participants involved developing a virtual ethnographic research system architecture prototype that allowed participants to voice their opinions related to democracy and how the application of democratic principles in various lived environments such as the workplace and home can affect their health and productivity. The dissertation starts by first delving into what democracy is within the context of general social research and social contracts as related to everyday interactions between individuals within organizational environments. Second, it determines how democracy affects individual human rights and their well-being within lived environments such as their workplace and home. Third, it identifies how technological advances can be used to educate and improve democratic processes within various lived environments such that individuals are given an equal voice in decisions that affect their health and well-being, ensuring that they able to secure justice and fairness within their lives. The virtual ethnographic research system architecture prototype tested the ability of a web application and database technology to provide a more dynamic and longitudinal methodology allowing participants to voice their opinions related to the relationship of democracy in work and home environments to the health and productivity of the people who live within these environments. The technology enables continuous feedback as participants are educated about democracy and their lived environments, unlike other research methods that take a one-time view of situations and apply them to continuously changing environments. The analysis of the participant's answers to the various qualitative and quantitative questions indicated that the majority of participants agree that a positive relationship exists between democracy in work and home environments and the health and productivity of the individuals who live within these environments.
ContributorsBooze, Randall Ray (Author) / Romero, Mary (Thesis advisor) / Goul, Michael (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2012
150594-Thumbnail Image.png
Description
As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). NM mass balance closure was achieved by measuring NMs in liquid effluent and waste biosolids. All NMs were well removed at the typical biomass concentration (1~2 gSS/L). However, carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC60; >95% removal). Although most NMs did not settle out of the feed solution without bacteria present, approximately 65% of the titanium dioxide was removed even in the absence of biomass simply due to self-aggregation and settling. Experiments conducted over 4 months with daily loadings of nC60 showed that nC60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. As most NMs appear to accumulate in biosolids, future research should examine the fate of NMs during disposal of WWTP biosolids, which may occur through composting or anaerobic digestion and/or land application, incineration, or landfill disposal.
ContributorsWang, Yifei (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
150498-Thumbnail Image.png
Description
Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating

Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating communities in the hydrogen-based membrane biofilm reactor (MBfR). The MBfR is used for the biological reduction of oxidized contaminants in water using hydrogen supplied as the electron donor by diffusion through gas-transfer fibers. First, I characterized a new anaerobic dechlorinating community developed in our laboratory, named DehaloR^2, in terms of chlorinated ethene turnover rates and assessed its microbial community composition. I then carried out an experiment to correlate performance and community structure for trichloroethene (TCE)-fed microbial consortia. Fill-and-draw reactors inoculated with DehaloR^2 demonstrated a direct correlation between microbial community function and structure as the TCE-pulsing rate was increased. An electron-balance analysis predicted the community structure based on measured concentrations of products and constant net yields for each microorganism. The predictions corresponded to trends in the community structure based on pyrosequencing and quantitative PCR up to the highest TCE pulsing rate, where deviations to the trend resulted from stress by the chlorinated ethenes. Next, I optimized a method for simultaneous detection of chlorinated ethenes and ethene at or below the Environmental Protection Agency maximum contaminant levels for groundwater using solid phase microextraction in a gas chromatograph with a flame ionization detector. This method is ideal for monitoring biological reductive dechlorination in groundwater, where ethene is the ultimate end product. The major advantage of this method is that it uses a small sample volume of 1 mL, making it ideally suited for bench-scale feasibility studies, such as the MBfR. Last, I developed a reliable start-up and operation strategy for TCE reduction in the MBfR. Successful operation relied on controlling the pH-increase effects of methanogenesis and homoacetogenesis, along with creating hydrogen limitation during start-up to allow dechlorinators to compete against other microorgansims. Methanogens were additionally minimized during continuous flow operation by a limitation in bicarbonate resulting from strong homoacetogenic activity.
ContributorsZiv-El, Michal (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Arizona State University (Publisher)
Created2012
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
136004-Thumbnail Image.png
Description
This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a

This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a year-long study beginning at Arizona State University. This larger study is determining what the effects are, if any, of a combination of nutritional and dietary treatments in individuals with Autism Spectrum Disorder. However, this paper only examines the VABS-II results of forty-three participants in the study, as well as their hand-grip strength. It was found that individuals with Autism Spectrum Disorder are substantially delayed in all four domains (communication, daily living skills, social skills, and motor skills) of adaptive behaviors measured by the VABS-II, particularly in communication. This study will be completed in May 2013, when it will be determined what the effects of these treatments are, if any.
ContributorsAdams, Rebecca (Author) / Ingram-Waters, Mary (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Pollard, Elena (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
135792-Thumbnail Image.png
Description
As a democratic innovation involving deliberation and decision making, participatory budgeting (PB) often catalyzes powerful changes among individual participants and within their respective communities. Certain models of PB designate autonomous spaces for young people to determine how to spend a portion of a particular budget, typically that of a municipality

As a democratic innovation involving deliberation and decision making, participatory budgeting (PB) often catalyzes powerful changes among individual participants and within their respective communities. Certain models of PB designate autonomous spaces for young people to determine how to spend a portion of a particular budget, typically that of a municipality or school. These processes of youth PB may address recent trends in the underrepresentation of youth in civic spaces. Following the initial launch of youth participatory budgeting (youth PB) in Cluj (Romania), I spent three weeks in Cluj conducting 45 semi-structured interviews with youth PB participants and one focus group with youth PB facilitators. This thesis explores two areas: (a) the main dynamics of the online Cluj youth PB process (team development and organization, themes of projects proposed and their intended impacts, and inclusion throughout the process) and (b) impact of youth PB on participants (participant learning, change, and empowerment). Main findings suggest that organized groups with ongoing projects dominated the youth PB process and that a majority of projects aspired to impact either all residents of Cluj or a specific youth group (e.g. young artists, young engineers), while very few projects intended to impact young people in Cluj broadly. More than 85% of participants reported feeling empowered by involvement in youth PB. Some differences in learning and change were found by gender, ethnicity, and age. Key recommendations for future iterations of this process include establishing deliberation between teams, encouraging informal group development, restructuring the voting process, and enhancing inclusion of ethnic minorities and migrants.
ContributorsBrennan, Ashley Jane (Author) / Schugurensky, Daniel, 1958- (Thesis director) / Almasan, Oana (Committee member) / Levine, Peter (Committee member) / Department of Psychology (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05