Matching Items (159)
Filtering by

Clear all filters

152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
152206-Thumbnail Image.png
Description
This dissertation explores the unique role schools play in contributing toward a sustainable future for their communities. This was undertaken by first conducting a thorough review and analysis of the literature on the current utilization of schools as agents of sustainable development, along with an evaluation of schools engaging in

This dissertation explores the unique role schools play in contributing toward a sustainable future for their communities. This was undertaken by first conducting a thorough review and analysis of the literature on the current utilization of schools as agents of sustainable development, along with an evaluation of schools engaging in this model around the United States. Following this, a framework was developed to aid in the assessment of school-community engagements from the perspective of social change. Sustainability problem solving tools were synthesized for use by schools and community stakeholders, and were tested in the case study of this dissertation. This case study combined methods from the fields of sustainable development, transition management, and social change to guide two schools in their attempts to increase community sustainability through addressing a shared sustainability problem: childhood obesity. The case study facilitated the creation of a sustainable vision for the Phoenix Metropolitan Area without childhood obesity, as well as strategic actions plans for each school to utilize as they move forward on addressing this challenge.
ContributorsLawless, Tamara Hope (Author) / Golub, Aaron (Thesis advisor) / Redman, Charles (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2013
151424-Thumbnail Image.png
Description
Sustainability challenges with severe local to global impacts require fundamental shifts in what industrial societies aspire to, generate, consume, and represent, as well as how they function. Transition governance is a promising framework to support these transformational efforts. A key component of transition governance is the construction of transition strategies,

Sustainability challenges with severe local to global impacts require fundamental shifts in what industrial societies aspire to, generate, consume, and represent, as well as how they function. Transition governance is a promising framework to support these transformational efforts. A key component of transition governance is the construction of transition strategies, i.e., action schemes for how to transition from the current state to a sustainable one. Despite accomplishments in building theory and methodology for transition governance, the concepts of what transition strategies entail and how they relate to specific interventions are still underdeveloped. This dissertation further develops the concept of transition strategies, and explores how different stakeholder groups and allies can develop and test transition strategies across different scales, in the specific context of urban sustainability challenges. The overarching research question is: How can cities build and implement comprehensive transition strategies across different urban scales, from the city to the organizational level? The dissertation comprises four studies that explore the dynamic between transition strategies and experiments at the city, neighborhood, and organizational levels with empirical examples from Phoenix, Arizona. The first study reviews and compares paradigms of intentional change, namely transition governance, backcasting, intervention research, change management, integrated planning, and adaptive management in order to offer a rich set of converging ideas on what strategies for intentional change towards sustainability entail. The second study proposes a comprehensive concept of transition strategies and illustrates the concept with the example of sustainability strategies created through a research partnership with the City of Phoenix. The third study explores the role of experiments in transition processes through the lens of the neighborhood-level initiative of The Valley of the Sunflowers. The fourth study examines the role organizations can play in initiating urban sustainability transitions using exemplary strategies and experiments implemented at a local high school. The studies combined contribute to the further development of transition theory and sustainable urban development concepts. While this research field is at a nascent stage, the thesis provides a framework and empirical examples for how to build evidence-based transition strategies in support of urban sustainability.
ContributorsKay, Braden Ryan (Author) / Wiek, Arnim (Thesis advisor) / Loorbach, Derk (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Tiger, Fern (Committee member) / Arizona State University (Publisher)
Created2012
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
151980-Thumbnail Image.png
Description
The Empowerment Zones were created in 1993 under Clinton's administration, demonstrating a commitment to solving tough socio-economic problems in distressed communities. The main objective associated with this program was economic recovery of distressed communities by creating jobs and providing various services to the indigenous populations. The designation of the Empowerment

The Empowerment Zones were created in 1993 under Clinton's administration, demonstrating a commitment to solving tough socio-economic problems in distressed communities. The main objective associated with this program was economic recovery of distressed communities by creating jobs and providing various services to the indigenous populations. The designation of the Empowerment Zones went in three rounds (1994, 1998, and 2001), and although the types and amounts of federal incentives varied across rounds, the four principles around which the program originated remain unchanged: strategic vision for change, community based partnerships, economic opportunity, and sustainable community development. Since its inception, the Empowerment Zones program has been implemented in 30 urban and 10 rural communities in 27 states across the U.S. Two central questions lead the research of this dissertation project: 1) What have been the main accomplishments of the round three federal Empowerment Zones program in Tucson? 2) What have been the main challenges of the round three federal Empowerment Zones program in Tucson? By using a case study research design and various techniques for data collection and analysis (including the program package Atlas.ti), this study examined the accomplishments and the challenges associated with the round three designated Empowerment Zone in Tucson. Evidence was collected from multiple sources, including 24 interviews, over 60 local newspaper articles, relevant documentation, annual performance reports, and other sources. The analysis reveals that the program's implementation in Tucson was strong in the beginning, but after two years, the earlier success started to fade quickly. The shortcomings of program design became evident during the implementation phase and further in the inability of the administration to collect relevant data to demonstrate the program's success. The consequences of the inability to provide data for program evaluation influenced the enthusiasm of the administrators and program partners, and weakened the political support. The reduction in the grant component contributed to overemphasis of the business development component thereby ignoring most community development aspects essential for the success of the program in Tucson. This study did not find evidence for the claim that round three of the empowerment zones program based on federal tax incentives contributes to the creation of new jobs and the attraction of new business in economically deprived communities in Tucson.
ContributorsAndonoska, Ljubinka (Author) / Schugurensky, Daniel, 1958- (Thesis advisor) / Miller, Gerald J. (Committee member) / Svara, James H. (Committee member) / Arizona State University (Publisher)
Created2013
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
152031-Thumbnail Image.png
Description
The passing of anti-immigrant legislation in the state of Arizona over the last decade has exacerbated an already oppressive system perpetuated by globalization and its byproducts, neoliberalism and neoconservativism. The social justice activist educators who live and work with the children and families most affected by these laws and policies

The passing of anti-immigrant legislation in the state of Arizona over the last decade has exacerbated an already oppressive system perpetuated by globalization and its byproducts, neoliberalism and neoconservativism. The social justice activist educators who live and work with the children and families most affected by these laws and policies must learn to navigate these controls if they hope to sustain their work. I have drawn from Freire's work surrounding the theories of praxis and conscientization to explain the motivation of these teachers, and the sociological theory of Communities of Practice (Lave & Wenger, 1991; Wenger, 1998; & Wenger, McDermott, & Snyder, 2002), to explain how the group, Arizona Teachers for Justice serves as a space of learning and support for these educators. This dissertation is a multiple case study and has employed semi-structured interviews with four social justice activist educators to understand how social justice activist educators in Arizona cope and sustain their teaching and activism, particularly through their membership in groups such as Arizona Teachers for Justice. The teachers in this study are each at different stages in their careers and each teaches in a different setting and/or grade level. This cross section provides multiple perspectives and varied lenses through which to view the struggles and triumphs of social justice activist educators in the state of Arizona. The teachers in this study share their experiences of being singled out for their activism and explain the ways they cope with such attacks. They explain how they manage to fulfill their dedication to equity by integrating critical materials while adhering to common core standards. They express the anger that keeps them fighting in the streets and the fears that keep them from openly rejecting unjust policies. The findings of this study contribute to the discussion of how to not only prepare social justice activist educators, but ways of supporting and sustaining their very crucial work. Neoliberal and neoconservative attacks on education are pervasive and it is critical that we prepare teachers to face these structural pressures if we hope to ever change the dehumanizing agenda of these global powers.
ContributorsEversman, Kimberly A (Author) / Swadener, Elizabeth (Thesis advisor) / Sandlin, Jennifer (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2013
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
151669-Thumbnail Image.png
Description
In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer

In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer phenomena governing contaminant transport and bioavailability. These phenomena cannot be properly studied using commonly conducted laboratory batch microcosms lacking realistic representation of the processes named above. Instead, relevant processes are better understood by using flow-through systems (sediment columns). However, flow-through column studies are typically conducted without replicates. Due to additional sources of variability (e.g., flow rate variation between columns and over time), column studies are expected to be less reproducible than simple batch microcosms. This was assessed through a comprehensive statistical analysis of results from multiple batch and column studies. Anaerobic microbial biotransformations of trichloroethene and of perchlorate were chosen as case studies. Results revealed that no statistically significant differences were found between reproducibility of batch and column studies. It has further been recognized that laboratory studies cannot accurately reproduce many phenomena encountered in the field. To overcome this limitation, a down-hole diagnostic device (in situ microcosm array - ISMA) was developed, that enables the autonomous operation of replicate flow-through sediment columns in a realistic aquifer setting. Computer-aided design (CAD), rapid prototyping, and computer numerical control (CNC) machining were used to create a tubular device enabling practitioners to conduct conventional sediment column studies in situ. A case study where two remediation strategies, monitored natural attenuation and bioaugmentation with concomitant biostimulation, were evaluated in the laboratory and in situ at a perchlorate-contaminated site. Findings demonstrate the feasibility of evaluating anaerobic bioremediation in a moderately aerobic aquifer. They further highlight the possibility of mimicking in situ remediation strategies on the small-scale in situ. The ISMA is the first device offering autonomous in situ operation of conventional flow-through sediment microcosms and producing statistically significant data through the use of multiple replicates. With its sustainable approach to treatability testing and data gathering, the ISMA represents a versatile addition to the toolbox of scientists and engineers.
ContributorsMcClellan, Kristin (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013