Matching Items (936)
Filtering by

Clear all filters

131677-Thumbnail Image.png
Description
As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power, in theory, to heat a metal oxide, cerium oxide, to a desired temperature. At specific temperatures and pressures, a reaction

As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power, in theory, to heat a metal oxide, cerium oxide, to a desired temperature. At specific temperatures and pressures, a reaction between an input gas, carbon dioxide or water vapor, and the metal oxide may produce fuel in the form of hydrogen or carbon monoxide. In order to reach the temperatures required by the reaction, a filament inside a high-temperature radiant heater must be heated to the desired temperature. In addition, the system’s pressure range must be satisfied. A pressure and temperature measurement device, as well as a voltage control, must be connected to an interface with a computer in order to monitor the pressure and temperature of different parts of the system. The cerium oxide element must also be constructed and placed inside the system. The desired shape of the cerium oxide material is a tube, to allow the flow of gas through the tubes and system and to provide mechanical strength. To construct the metal oxide tubes, they need to be extruded, dried, and sintered correctly. All the manufactured elements described serve an essential purpose in the system and are discussed further in this document.
This report focuses on the manufacturing of ceria tubes, the construction of a high-temperature radiant heater filament, and the implementation of a pressure measurement device. The manufacturing of ceria tubes includes the extrusion, the drying, and the sintering of the tubes. In addition, heating element filament construction consists of spot-welding certain metals together to create a device similar to that of a light bulb filament. Different methods were considered in each of these areas, and they are described in this report. All of the explorations in this document move towards the final device, a thermochemical reactor for the production of hydrogen (H2) and carbon monoxide (CO) from water (H2O) and carbon dioxide (CO2).
The results of this report indicate that there are several important manufacturing steps to create the most desirable results, in terms of tube manufacturing and heating element design. For the correct tube construction, they must be dried in a drying rack, and they must be sintered in V-groove plates. In addition, the results of the heating element manufacturing indicate that the ideal heating element filament needs to be simple in design (easily fixed), cost-effective, require little construction time, attach to the ends of the system easily, provide mechanical flexibility, and prevent the coil from touching the walls of the tube it lies in. Each aspect of the ideal elements, whether they are tubes or heating elements, is explored in this report.
ContributorsCaron, Danielle (Author) / Milcarek, Ryan (Thesis director) / Ermanoski, Ivan (Committee member) / Stechel, Ellen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131685-Thumbnail Image.png
Description
Anthropogenic climate change caused by increasing carbon emissions poses a threat to nearly every living organism. One consequence of these emissions is ocean acidification (OA). While OA has been shown to directly inhibit growth in calcifying animals, it might also have negative effects on other marine life. I conducted a

Anthropogenic climate change caused by increasing carbon emissions poses a threat to nearly every living organism. One consequence of these emissions is ocean acidification (OA). While OA has been shown to directly inhibit growth in calcifying animals, it might also have negative effects on other marine life. I conducted a systematic quantitative literature review on the effects of OA on fish behavior. The review consisted of 29 peer-reviewed, published journal articles. Most articles report some degree of negative impact of OA. Impacts include sensory impairment, erratic swimming patterns and attraction to predators. Many studies report insignificant impacts, thus continued research is needed to understand the consequences of human behavior and assist in mitigating our impact.
ContributorsKubiak, Allison Noelle (Co-author) / Kubiak, Allison (Co-author) / Gerber, Leah (Thesis director) / Eikenberry, Steffen (Committee member) / Kelman, Jonathan (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131690-Thumbnail Image.png
Description
Current robotic systems have difficulties traversing and interacting with complex and deformable terrains, such as sand, mud, and water. This research intends to find hierarchical concepts that can be implemented into robotic systems for efficient locomotion by studying animal interactions with these terrains. Due to specific biological characteristics and environmental

Current robotic systems have difficulties traversing and interacting with complex and deformable terrains, such as sand, mud, and water. This research intends to find hierarchical concepts that can be implemented into robotic systems for efficient locomotion by studying animal interactions with these terrains. Due to specific biological characteristics and environmental factors, the basilisk lizard is one animal that can transition easily between many types of terrain. This research will investigate the dynamics and kinematics of the basilisk lizard as it runs on the surface of water. Specifically, a fluid dynamic force platform has been designed and developed that will directly measure the forces exerted by the animal’s feet as it runs across the water. This platform will be used in conjunction with a motion capture system to characterize the basilisk lizard movements. This report examines the design and development of the force platform, the characterization of the frequencies of the platform leading to validation, and presents observations from preliminary lizard experiments with the setup.
ContributorsGambatese, Marcus B (Author) / Marvi, Hamid (Thesis director) / Bagheri, Hosain (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131696-Thumbnail Image.png
Description
The following report provides details on the development of a protective enclosure and power system for an anti-poaching gunshot detection system to be implemented in Costa Rica. The development of a gunshot detection system is part of an ongoing project started by the Acoustic Ecology Lab at Arizona State University

The following report provides details on the development of a protective enclosure and power system for an anti-poaching gunshot detection system to be implemented in Costa Rica. The development of a gunshot detection system is part of an ongoing project started by the Acoustic Ecology Lab at Arizona State University in partnership with the Phoenix Zoo. As a whole, the project entails the development of a gunshot detection algorithm, wireless mesh alert system, device enclosure, and self-sustaining power system. For testing purposes, four devices, with different power system setups, were developed. Future developments are discussed and include further testing, more specialized mounting techniques, and the eventual expansion of the initial device network. This report presents the initial development of the protective enclosure and power system of the anti-poaching system that can be implemented in wildlife sanctuaries around the world.
ContributorsCarver, Cameron River (Author) / Paine, Dr. Garth (Thesis director) / Schipper, Dr. Jan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131704-Thumbnail Image.png
Description
Competitive Swimming is not only a sport, but also an invaluable life skill. As long as it has existed, people have wondered how to swim faster. There are a multitude of variables that go into any race and shockingly not much research around to scientifically approach the question. This study

Competitive Swimming is not only a sport, but also an invaluable life skill. As long as it has existed, people have wondered how to swim faster. There are a multitude of variables that go into any race and shockingly not much research around to scientifically approach the question. This study aims to investigate the drag forces behind a Swimmer’s race to give better insight as to what will slow a Swimmer down through simulations in ANSYS Fluent. Simple 2D simulations were made with a Swimmer in different positions and a flow of water moved over them. What was found was that different positions, or techniques, yield vastly different results. When following typical good technique, a Swimmer can expect to be approximately 136% less drag forces compared to a typical bad technique. Additionally, small errors such as not being perfectly horizontal can lead to a difference of around 100 Newtons of drag force between perfectly horizontal and a 5-degree angle of attack. Another observation made was that errors are exacerbated by being near a wall, so Swimming in an end lane next to the pool wall leads to about 57% more drag forces that any other lane. Still, there are many more observations to be made as there is so much more to research in swimming.
ContributorsBenavidez, Kevin A (Author) / Murthy, Dr. Raghavendra (Thesis director) / Huang, Dr. Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131593-Thumbnail Image.png
Description
To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a

To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a high level one such agricultural system, specifically examining the requirements and flow of Nitrogen, Phosphorus and Potassium required to sustain a given human colony size. We developed a Microsoft Excel based model that relates human nutritional needs to the amount available in food crops and in turn the amount of Martian soil required for agriculture. The model works by inputting the number of humans, and then utilizing the built-in calculations and datasets to determine how much of each nutrient is needed to meet all nutritional needs of the colony. Using that information, it calculates the amount of plants needed to supply the nutrition and then calculates the amount of nutrients that would be taken from the soil. It compares the Martian regolith to the nutrient uptake, accounting for inedible biomass from the plants and human waste that can be added to the regolith. Any deficiencies are used to determine if and how much fertilizer should be added to the system initially and over time. Using the total amount of plants and the number of harvests, the amount of Martian land required for sustaining the colony is computed. These results can be used as a building block to enable the successful design of an agricultural system on Mars.
ContributorsGarland, Michael (Co-author) / Zinke, Sarah (Co-author) / Muenich, Rebecca (Thesis director) / Perreault, Francois (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131750-Thumbnail Image.png
Description
A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to provide ways to send secure messages. This paper reviews some simple OWFs and examines their use in contemporary cryptosystems and

A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to provide ways to send secure messages. This paper reviews some simple OWFs and examines their use in contemporary cryptosystems and other cryptographic applications. This paper also discusses the broader implications of OWF-based cryptography, including its relevance to fields such as complexity theory and quantum computing, and considers the importance of OWFs in future cryptographic development
ContributorsMcdowell, Jeremiah Tenney (Author) / Hines, Taylor (Thesis director) / Foy, Joseph (Committee member) / Sprung, Florian (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131763-Thumbnail Image.png
Description
The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation of kinematics with various aerodynamic principles being added incrementally. The primary aerodynamic principle that influenced the trajectory of the projectile was in the coefficient of drag. The drag coefficient was split into three primary components: the form drag, skin friction drag, and base pressure drag. These together made up the core of the model, additional complexity served to increase the accuracy of the model and generalize to different projectile profiles.
ContributorsBlair, Martin (Co-author) / Armenta, Francisco (Co-author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131923-Thumbnail Image.png
Description
Older adults tend to learn at a lesser extent and slower rate than younger individuals. This is especially problematic for older adults at risk to injury or neurological disease who require therapy to learn and relearn motor skills. There is evidence that the reticulospinal system is critical to motor learning

Older adults tend to learn at a lesser extent and slower rate than younger individuals. This is especially problematic for older adults at risk to injury or neurological disease who require therapy to learn and relearn motor skills. There is evidence that the reticulospinal system is critical to motor learning and that deficits in the reticulospinal system may be responsible, at least in part, for learning deficits in older adults. Specifically, delays in the reticulospinal system (measured via the startle reflex) are related to poor motor learning and retention in older adults. However, the mechanism underlying these delays in the reticulospinal system is currently unknown.

Along with aging, sleep deprivation is correlated with learning deficits. Research has shown that a lack of sleep negatively impacts motor skill learning and consolidation. Since there is a link between sleep and learning, as well as learning and the reticulospinal system, these observations raise the question: does sleep deprivation underlie reticulospinal delays? We hypothesized that sleep deprivation was correlated to a slower startle response, indicating a delayed reticulospinal system. Our objectives were to observe the impact of sleep deprivation on 1) the startle response (characterized by muscle onset latency and percentage of startle responses elicited) and 2) functional performance (to determine whether subjects were sufficiently sleep deprived).

21 young adults participated in two experimental sessions: one control session (8-10 hour time in bed opportunity for at least 3 nights prior) and one sleep deprivation session (0 hour time in bed opportunity for one night prior). The same protocol was conducted during each session. First, subjects were randomly exposed to 15 loud, startling acoustic stimuli of 120 dB. Electromyography (EMG) data measured muscle activity from the left and right sternocleidomastoid (LSCM and RSCM), biceps brachii, and triceps brachii. To assess functional performance, cognitive, balance, and motor tests were also administered. The EMG data were analyzed in MATLAB. A generalized linear mixed model was performed on LSCM and RSCM onset latencies. Paired t-tests were performed on the percentage of startle responses elicited and functional performance metrics. A p-value of less than 0.05 indicated significance.

Thirteen out of 21 participants displayed at least one startle response during their control and sleep deprived sessions and were further analyzed. No differences were found in onset latency (RSCM: control = 75.87 ± 21.94ms, sleep deprived = 82.06 ± 27.47ms; LSCM: control = 79.53 ± 17.85ms, sleep deprived = 78.48 ± 20.75ms) and percentage of startle responses elicited (control = 84.10 ± 15.53%; sleep deprived = 83.59 ± 18.58%) between the two sessions. However, significant differences were observed in reaction time, TUG with Dual time, and average balance time with the right leg up. Our data did not support our hypothesis; no significant differences were seen between subjects’ startle responses during the control and sleep deprived sessions. However, sleep deprivation was indicated with declines were observed in functional performance. Therefore, we concluded that sleep deprivation may not affect the startle response and underlie delays in the reticulospinal system.
ContributorsGopalakrishnan, Smita (Author) / Honeycutt, Claire (Thesis director) / Petrov, Megan (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131926-Thumbnail Image.png
Description
Structural assemblies for military applications must be guaranteed to withstand normal operating environments. Traditionally, experimental testing is performed on a prototype of the object to understand how it will behave under potential failure conditions. However, this process can be time-consuming and expensive, and it is often desired to have preliminary

Structural assemblies for military applications must be guaranteed to withstand normal operating environments. Traditionally, experimental testing is performed on a prototype of the object to understand how it will behave under potential failure conditions. However, this process can be time-consuming and expensive, and it is often desired to have preliminary information to guide the design of the components. Consequently, a finite element analysis (FEA) can be performed using computational tools to approximate the failure behavior of the object before experiments are performed. This can provide information for a faster preliminary evaluation of the design, which very useful when implementing new technologies in the defense sector.
Currently, a new design for collapsible, lightweight ammunition package (LAP) has been proposed for military applications. The design employs rubber gaskets which enable the LAP to fold when it is empty, in addition to carbon fiber walls which decrease weight while increasing strength. To evaluate the new design, it is desired to perform a finite element analysis to simulate the behavior of the can under various drop impact conditions. Because the design includes complex joinery, which is often difficult to model, the purpose of this thesis project is to determine the most effective methodology to define the physical system using finite elements for impact simulations, and consequently perform the desired analysis for the LAP.
ContributorsPham, Julie Vi (Author) / Jiang, Hanqing (Thesis director) / Zhai, Zirui (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05