Matching Items (6)
Description

This project explores the current building and land use within the South Mountain Village (SMV) area. The South Central Light Rail extension corridor serves as a focus area, including a half mile radius around each of the five proposed light rail stations. Research of the area included analyzing SMV demographic

This project explores the current building and land use within the South Mountain Village (SMV) area. The South Central Light Rail extension corridor serves as a focus area, including a half mile radius around each of the five proposed light rail stations. Research of the area included analyzing SMV demographic information, analyzing land use and zoning, conducting a site visit, researching case studies, and information on current City of Phoenix, and other transit oriented development plans. Based on the research and case studies, recommendations and propositions are made for:

1. The implementation of a community-based transit oriented development.
2. The integration of green infrastructure and urban agriculture.
3. Best land management practices.
4. Policy to ensure appropriate and sustainable planning for the future.

ContributorsAlford, Tari (Author) / Alhashmi, Hanan (Author) / Burks, Aric (Author) / Gomez, Matthew (Author) / Waldman, Matthew (Author)
Created2018-05-14
Description

This study addresses the social and physical constraints and opportunities for South Mountain Village, particularly along the Rio Salado as it intersects with the proposed light rail extension on Central Avenue. The primary goals guiding this document are ecological restoration, social and physical connectivity, maintenance, management, development and future planning.

This study addresses the social and physical constraints and opportunities for South Mountain Village, particularly along the Rio Salado as it intersects with the proposed light rail extension on Central Avenue. The primary goals guiding this document are ecological restoration, social and physical connectivity, maintenance, management, development and future planning. This study discusses the history of the Rio Salado riparian area, analyses current riparian conditions, and provides context from similar cases both locally and nationally.

It has been demonstrated that access to recreational opportunities can improve the livelihood and reduce negative health effects for residents nearby. With this in mind, the physical connectivity of South Mountain residents is assessed to determine the degree of accessibility to recreational areas of the Rio Salado. This analysis will also be used to address areas in which residents do not have equitable access and will be used to guide recommendations to increase that access. Additionally, as growth occurs, existing social vulnerability concerns are addressed in regard to marginalized populations relying on the area’s ecological and grey infrastructure for refuge.

As the Rio Salado 2.0 Project and the Valley Metro South Central light rail extension begins construction and the opportunity to develop increases, residents and business owners are concerned that redevelopment will affect the integrity and connectivity of the area. This study outlines how these changes may affect stakeholders while keeping the area accessible and equitable for all. Evaluation of the sites and parcels surrounding the Rio Salado for future development while taking into account its rich history and needs of the community is important for the community and the City of Phoenix as a whole. This study incorporates concepts from the Rio Salado Beyond the Banks Area Plan and other existing plans and regulations for the area. This study aims to provide a roadmap for future development along the Rio Salado at South Mountain Village in a sustainable and equitable way.

ContributorsBayham, Amanda (Author) / Head, Veronica (Author) / Horvath, Veronica (Author) / Li, Rui (Author) / Rorex, Kellie (Author)
Created2018-05-14
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
191571-Thumbnail Image.png
Description
The Fall 2023 Transportation Systems Planning class at Arizona State University analyzed a suite of ADOT plans and reports against the SDGs, assessing where these plans aided in achieving or harmed progress towards these goals. From this analysis, the class proposed recommendations to improve ADOT alignment with the SDGs. The

The Fall 2023 Transportation Systems Planning class at Arizona State University analyzed a suite of ADOT plans and reports against the SDGs, assessing where these plans aided in achieving or harmed progress towards these goals. From this analysis, the class proposed recommendations to improve ADOT alignment with the SDGs. The findings and recommendations have been organized in this report.
ContributorsPorto, Mattheus (Editor) / Searles, Ian (Editor) / Wolfinbarger, Robert (Editor) / Apeji, Samuel (Author) / Arthur, Cole (Author) / Aviles, Hirvin (Author) / Banzon, Lana (Author) / Bhagia, Manav Sandeep (Author) / Catanese, Joseph (Author) / Corral, Oscar (Author) / Doyle, Carter (Author) / Duquella, Frederic (Author) / Gallerani, Cecilia (Author) / Gaspar, Maria (Author) / Gomez, Angela (Author) / Hall, Adam (Author) / Hamdan, Amir (Author) / Hermann, Aleksander (Author) / Hunyada, Tyler (Author) / Italo, Marcus (Author) / Jasarevic, Elma (Author) / Jimenez, Mikayla (Author) / Jones, Shepherd (Author) / Lafont, Eliott (Author) / Liu, Brennan (Author) / Mendez Aceves, Carlos (Author) / Nguyen, Sophie (Author) / Nwe, Theint (Author) / Tun Oo, Si Thu (Author) / Varela, Xenia Perez (Author) / Ray, Zachary (Author) / Reames, Isaac (Author) / Rodriguez Ocana, Miguel (Author) / Tang, Fang (Author) / Chester, Mikhail Vin (Author)
Created2024-03-07
161203-Thumbnail Image.png
Description

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for a target region, which could be transformed into a heat exposure model by means of simulation and spatial-temporal joining. By combining and implementing the most robust software and data available, Icarus was able to capture person-based exposure with unparalleled detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, USA to carry out a case study using Icarus.

ContributorsLi, Rui (Author) / Brownlee, Ben (Author) / Chester, Mikhail Vin (Author) / Hondula, David M. (Author) / Middel, Ariane (Author) / Michne, Austin (Author) / Watkins, Lance (Author)
Description
The “flipped classroom” approach entails the reversal of traditional teaching methods, such that students engage with instructional content independently before class, and in-class time is dedicated to active learning, problem-solving, and collaborative activities. This paper predominantly consists of literature review. This paper explores the impact of the flipped classroom model

The “flipped classroom” approach entails the reversal of traditional teaching methods, such that students engage with instructional content independently before class, and in-class time is dedicated to active learning, problem-solving, and collaborative activities. This paper predominantly consists of literature review. This paper explores the impact of the flipped classroom model on student engagement, comprehension, and critical thinking skills. The findings aim to contribute valuable insights into the potential benefits and limitations of the flipped classroom model in the realm of engineering education, shedding light on its applicability as a transformative instructional strategy for enhancing student learning outcomes and preparing future engineers for the demands of their profession. Keywords: Flipped, classroom, engineering
ContributorsJones, Shepherd (Author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2024-05