Matching Items (134)
Filtering by

Clear all filters

152579-Thumbnail Image.png
Description
This qualitative study examines the major changes in relationship closeness of married couples when one spouse acquires a vision disability. Turning Points analysis and Retrospective Interview Technique (RIT) were utilized which required participants to plot their relational journey on a graph after the onset of the disability. A sample of

This qualitative study examines the major changes in relationship closeness of married couples when one spouse acquires a vision disability. Turning Points analysis and Retrospective Interview Technique (RIT) were utilized which required participants to plot their relational journey on a graph after the onset of the disability. A sample of 32 participants generating 100 unique turning points and 32 RIT graphs lent in-depth insight into the less explored area of the impact of a visual disability on marital relationships. A constant comparison method employed for the analysis of these turning points revealed six major categories, which include Change in Relational Dynamics, Realization of the Disability, Regaining Normality in Life, Resilience, Reactions to Assistance, and Dealing with the Disability. These turning points differ in terms of their positive or negative impact on the relational closeness between partners. In addition, the 32 individual RIT graphs were also analyzed and were grouped into four categories based on visual similarity, which include Erratic Relational Restoration, Erratic Relational Increase, Consistent Closeness and Gradual Relational Increase. Results provide theoretical contributions to disability and marriage literature. Implications for the application of turning points to the study of post-disability marital relationships are also discussed, and research directions identified.
ContributorsBhagchandani, Bhoomika (Author) / Kassing, Jeffrey W. (Thesis advisor) / Kelley, Douglas L. (Committee member) / Fisher, Carla L. (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2014
152833-Thumbnail Image.png
Description
In many fields one needs to build predictive models for a set of related machine learning tasks, such as information retrieval, computer vision and biomedical informatics. Traditionally these tasks are treated independently and the inference is done separately for each task, which ignores important connections among the tasks. Multi-task learning

In many fields one needs to build predictive models for a set of related machine learning tasks, such as information retrieval, computer vision and biomedical informatics. Traditionally these tasks are treated independently and the inference is done separately for each task, which ignores important connections among the tasks. Multi-task learning aims at simultaneously building models for all tasks in order to improve the generalization performance, leveraging inherent relatedness of these tasks. In this thesis, I firstly propose a clustered multi-task learning (CMTL) formulation, which simultaneously learns task models and performs task clustering. I provide theoretical analysis to establish the equivalence between the CMTL formulation and the alternating structure optimization, which learns a shared low-dimensional hypothesis space for different tasks. Then I present two real-world biomedical informatics applications which can benefit from multi-task learning. In the first application, I study the disease progression problem and present multi-task learning formulations for disease progression. In the formulations, the prediction at each point is a regression task and multiple tasks at different time points are learned simultaneously, leveraging the temporal smoothness among the tasks. The proposed formulations have been tested extensively on predicting the progression of the Alzheimer's disease, and experimental results demonstrate the effectiveness of the proposed models. In the second application, I present a novel data-driven framework for densifying the electronic medical records (EMR) to overcome the sparsity problem in predictive modeling using EMR. The densification of each patient is a learning task, and the proposed algorithm simultaneously densify all patients. As such, the densification of one patient leverages useful information from other patients.
ContributorsZhou, Jiayu (Author) / Ye, Jieping (Thesis advisor) / Mittelmann, Hans (Committee member) / Li, Baoxin (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2014
152840-Thumbnail Image.png
Description
Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm design, should help achieving improved performance while delivering intuitive interpretation of the algorithmic outcomes. My study addresses the problem of how to explicitly consider the semantic information of the visual data in the sparse learning algorithms. In this work, we identify four problems which are of great importance and broad interest to the community. Specifically, a novel approach is proposed to incorporate label information to learn a dictionary which is not only reconstructive but also discriminative; considering the formation process of face images, a novel image decomposition approach for an ensemble of correlated images is proposed, where a subspace is built from the decomposition and applied to face recognition; based on the observation that, the foreground (or salient) objects are sparse in input domain and the background is sparse in frequency domain, a novel and efficient spatio-temporal saliency detection algorithm is proposed to identify the salient regions in video; and a novel hidden Markov model learning approach is proposed by utilizing a sparse set of pairwise comparisons among the data, which is easier to obtain and more meaningful, consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in surgical simulations. In those four problems, different types of semantic information are modeled and incorporated in designing sparse learning algorithms for the corresponding visual computing tasks. Several real world applications are selected to demonstrate the effectiveness of the proposed methods, including, face recognition, spatio-temporal saliency detection, abnormality detection, spatio-temporal interest point detection, motion analysis and emotion recognition. In those applications, data of different modalities are involved, ranging from audio signal, image to video. Experiments on large scale real world data with comparisons to state-of-art methods confirm the proposed approaches deliver salient advantages, showing adding those semantic information dramatically improve the performances of the general sparse learning methods.
ContributorsZhang, Qiang (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2014
153340-Thumbnail Image.png
Description
While discrete emotions like joy, anger, disgust etc. are quite popular, continuous

emotion dimensions like arousal and valence are gaining popularity within the research

community due to an increase in the availability of datasets annotated with these

emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle

and complex affect dimensions but are

While discrete emotions like joy, anger, disgust etc. are quite popular, continuous

emotion dimensions like arousal and valence are gaining popularity within the research

community due to an increase in the availability of datasets annotated with these

emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle

and complex affect dimensions but are difficult to predict.

Dimension reduction techniques form the core of emotion recognition systems and

help create a new feature space that is more helpful in predicting emotions. But these

techniques do not necessarily guarantee a better predictive capability as most of them

are unsupervised, especially in regression learning. In emotion recognition literature,

supervised dimension reduction techniques have not been explored much and in this

work a solution is provided through probabilistic topic models. Topic models provide

a strong probabilistic framework to embed new learning paradigms and modalities.

In this thesis, the graphical structure of Latent Dirichlet Allocation has been explored

and new models tuned to emotion recognition and change detection have been built.

In this work, it has been shown that the double mixture structure of topic models

helps 1) to visualize feature patterns, and 2) to project features onto a topic simplex

that is more predictive of human emotions, when compared to popular techniques

like PCA and KernelPCA. Traditionally, topic models have been used on quantized

features but in this work, a continuous topic model called the Dirichlet Gaussian

Mixture model has been proposed. Evaluation of DGMM has shown that while modeling

videos, performance of LDA models can be replicated even without quantizing

the features. Until now, topic models have not been explored in a supervised context

of video analysis and thus a Regularized supervised topic model (RSLDA) that

models video and audio features is introduced. RSLDA learning algorithm performs

both dimension reduction and regularized linear regression simultaneously, and has outperformed supervised dimension reduction techniques like SPCA and Correlation

based feature selection algorithms. In a first of its kind, two new topic models, Adaptive

temporal topic model (ATTM) and SLDA for change detection (SLDACD) have

been developed for predicting concept drift in time series data. These models do not

assume independence of consecutive frames and outperform traditional topic models

in detecting local and global changes respectively.
ContributorsLade, Prasanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Balasubramanian, Vineeth N (Committee member) / Arizona State University (Publisher)
Created2015
153022-Thumbnail Image.png
Description
In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control

In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and orientation from coplanar point correspondences. This thesis discusses current ideas and proposes new methods for the three challenges mentioned. In the end, a working prototype is produced.
ContributorsWalker, Collin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, David (Committee member) / Arizona State University (Publisher)
Created2014
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
153404-Thumbnail Image.png
Description
Splicing of digital images is a powerful form of tampering which transports regions of an image to create a composite image. When used as an artistic tool, this practice is harmless but when these composite images can be used to create political associations or are submitted as evidence in the

Splicing of digital images is a powerful form of tampering which transports regions of an image to create a composite image. When used as an artistic tool, this practice is harmless but when these composite images can be used to create political associations or are submitted as evidence in the judicial system they become more impactful. In these cases, distinction between an authentic image and a tampered image can become important.

Many proposed approaches to image splicing detection follow the model of extracting features from an authentic and tampered dataset and then classifying them using machine learning with the goal of optimizing classification accuracy. This thesis approaches splicing detection from a slightly different perspective by choosing a modern splicing detection framework and examining a variety of preprocessing techniques along with their effect on classification accuracy. Preprocessing techniques explored include Joint Picture Experts Group (JPEG) file type block line blurring, image level blurring, and image level sharpening. Attention is also paid to preprocessing images adaptively based on the amount of higher frequency content they contain.

This thesis also recognizes an identified problem with using a popular tampering evaluation dataset where a mismatch in the number of JPEG processing iterations between the authentic and tampered set creates an unfair statistical bias, leading to higher detection rates. Many modern approaches do not acknowledge this issue but this thesis applies a quality factor equalization technique to reduce this bias. Additionally, this thesis artificially inserts a mismatch in JPEG processing iterations by varying amounts to determine its effect on detection rates.
ContributorsGubrud, Aaron (Author) / Li, Baoxin (Thesis advisor) / Candan, Kasim (Committee member) / Kadi, Zafer (Committee member) / Arizona State University (Publisher)
Created2015
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150362-Thumbnail Image.png
Description
There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal

There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal of enabling such applications; however, significant challenges still remain, particularly, in the context of multi-user communications. With the motivation of addressing some of these challenges, the main focus of this dissertation is the design and analysis of capacity approaching coding schemes for several (wireless) multi-user communication scenarios. Specifically, three main themes are studied: superposition coding over broadcast channels, practical coding for binary-input binary-output broadcast channels, and signalling schemes for two-way relay channels. As the first contribution, we propose an analytical tool that allows for reliable comparison of different practical codes and decoding strategies over degraded broadcast channels, even for very low error rates for which simulations are impractical. The second contribution deals with binary-input binary-output degraded broadcast channels, for which an optimal encoding scheme that achieves the capacity boundary is found, and a practical coding scheme is given by concatenation of an outer low density parity check code and an inner (non-linear) mapper that induces desired distribution of "one" in a codeword. The third contribution considers two-way relay channels where the information exchange between two nodes takes place in two transmission phases using a coding scheme called physical-layer network coding. At the relay, a near optimal decoding strategy is derived using a list decoding algorithm, and an approximation is obtained by a joint decoding approach. For the latter scheme, an analytical approximation of the word error rate based on a union bounding technique is computed under the assumption that linear codes are employed at the two nodes exchanging data. Further, when the wireless channel is frequency selective, two decoding strategies at the relay are developed, namely, a near optimal decoding scheme implemented using list decoding, and a reduced complexity detection/decoding scheme utilizing a linear minimum mean squared error based detector followed by a network coded sequence decoder.
ContributorsBhat, Uttam (Author) / Duman, Tolga M. (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Li, Baoxin (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011