Matching Items (97)
Filtering by

Clear all filters

128478-Thumbnail Image.png
Description

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives,

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.

ContributorsZhou, Xiaofan (Author) / Rokas, Antonis (Author) / Berger, Shelley L. (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / Zwiebel, Laurence J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-12
128499-Thumbnail Image.png
Description

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models.

ContributorsLi, Yueqi (Author) / Xiang, Limin (Author) / Palma, Julio (Author) / Asai, Yoshihiro (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-04-15
128460-Thumbnail Image.png
Description

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring of the deformation with subnanometer resolution allows quantitative analysis of small molecule–membrane protein interaction kinetics in single cells. This new strategy provides mechanical amplification of small binding signals, making it possible to detect small molecule interactions with membrane proteins. This capability, together with spatial resolution, also allows the study of the heterogeneous nature of cells by analyzing the interaction kinetics variability between different cells and between different regions of a single cell.

ContributorsGuan, Yan (Author) / Shan, Xiaonan (Author) / Zhang, Fenni (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-10-23
128231-Thumbnail Image.png
Description

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.

ContributorsTerrapon, Nicolas (Author) / Li, Cai (Author) / Robertson, Hugh M. (Author) / Ji, Lu (Author) / Meng, Xuehong (Author) / Booth, Warren (Author) / Chen, Zhensheng (Author) / Childers, Christopher P. (Author) / Glastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Gowin, Johannes (Author) / Gronenberg, Wulfila (Author) / Hermansen, Russell A. (Author) / Hu, Haofu (Author) / Hunt, Brendan G. (Author) / Huylmans, Ann Kathrin (Author) / Khalil, Sayed M. S. (Author) / Mitchell, Robert D. (Author) / Munoz-Torres, Monica C. (Author) / Mustard, Julie (Author) / Pan, Hailin (Author) / Reese, Justin T. (Author) / Scharf, Michael E. (Author) / Sun, Fengming (Author) / Vogel, Heiko (Author) / Xiao, Jin (Author) / Yang, Wei (Author) / Yang, Zhikai (Author) / Yang, Zuoquan (Author) / Zhou, Jiajian (Author) / Zhu, Jiwei (Author) / Brent, Colin S. (Author) / Elsik, Christine G. (Author) / Goodisman, Michael A. D. (Author) / Liberles, David A. (Author) / Roe, R. Michael (Author) / Vargo, Edward L. (Author) / Vilcinskas, Andreas (Author) / Wang, Jun (Author) / Bornberg-Bauer, Erich (Author) / Korb, Judith (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-05-20
128798-Thumbnail Image.png
Description

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

ContributorsLiu, Chenbin (Author) / Tsow, Francis (Author) / Zou, Yi (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-02-01
128812-Thumbnail Image.png
Description

Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface

Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates.

ContributorsShi, Jie (Author) / Wang, Yalin (Author) / Ceschin, Rafael (Author) / An, Xing (Author) / Lao, Yi (Author) / Vanderbilt, Douglas (Author) / Nelson, Marvin D. (Author) / Thompson, Paul M. (Author) / Panigrahy, Ashok (Author) / Lepore, Natasha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-07-03
128676-Thumbnail Image.png
Description

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

ContributorsDeng, Yue (Author) / Chen, Cheng (Author) / Xian, Xiaojun (Author) / Tsow, Francis (Author) / Verma, Gaurav (Author) / McConnell, Rob (Author) / Fruin, Scott (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-12-03