Matching Items (104)
154991-Thumbnail Image.png
Description
Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids.
ContributorsTejeda Ferrari, Marely (Author) / Moore, Ana (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, John (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2016
153110-Thumbnail Image.png
Description
The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic.

The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic. This thesis explores an immunodiagnostic technology based on highly scalable, non-natural sequence peptide microarrays designed to profile the humoral immune response and address the healthcare problem. The primary aim of this thesis is to explore the ability of these arrays to map continuous (linear) epitopes. I discovered that using a technique termed subsequence analysis where epitopes could be decisively mapped to an eliciting protein with high success rate. This led to the discovery of novel linear epitopes from Plasmodium falciparum (Malaria) and Treponema palladium (Syphilis), as well as validation of previously discovered epitopes in Dengue and monoclonal antibodies. Next, I developed and tested a classification scheme based on Support Vector Machines for development of a Dengue Fever diagnostic, achieving higher sensitivity and specificity than current FDA approved techniques. The software underlying this method is available for download under the BSD license. Following this, I developed a kinetic model for immunosignatures and tested it against existing data driven by previously unexplained phenomena. This model provides a framework and informs ways to optimize the platform for maximum stability and efficiency. I also explored the role of sequence composition in explaining an immunosignature binding profile, determining a strong role for charged residues that seems to have some predictive ability for disease. Finally, I developed a database, software and indexing strategy based on Apache Lucene for searching motif patterns (regular expressions) in large biological databases. These projects as a whole have advanced knowledge of how to approach high throughput immunodiagnostics and provide an example of how technology can be fused with biology in order to affect scientific and health outcomes.
ContributorsRicher, Joshua Amos (Author) / Johnston, Stephen A. (Thesis advisor) / Woodbury, Neal (Committee member) / Stafford, Phillip (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014
156312-Thumbnail Image.png
Description
Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only

Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only marginally accessed source of cancer markers. The approach used in this dissertation, which is referred to as “glycan node analysis”, is a molecularly bottom-up approach to plasma/serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals.

The diagnostic utility of this approach as applied to lung cancer patients across all stages as well as prostate, serous ovarian, and pancreatic cancer patients compared to certifiably healthy individuals, nominally healthy individuals and/or risk-matched controls is reported. Markers for terminal fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching and outer-arm fucosylation were most able to differentiate cases from controls. These markers behaved in a stage-dependent manner in lung cancer as well as other types of cancer. Using a Cox proportional hazards regression model, the ability of these markers to predict progression and survival in lung cancer patients was assessed. In addition, the potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.

Plasma samples from former bladder cancer patients with currently no evidence of disease (NED), non-muscle invasive bladder cancer (NMIBC), and muscle invasive bladder cancer (MIBC) along with certifiably healthy controls were analyzed. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from controls; but NED, NMIBC, and MIBC were not distinguished from one another. Markers for α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. These two glycan features were found to be correlated to the concentration of C-reactive protein, a known prognostic marker for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
ContributorsRoshdiferdosi, Shadi (Author) / Borges, Chad R (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2018
156114-Thumbnail Image.png
Description
Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform

Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could share the signature by studying the enrichment of the common signature in the pathogen proteomes. Following this, I worked on studying cancer samples from different stages and correlated the immune response with whether the epitope presented by tumor is similar to the pathogen proteome. An effective immune response is defined as an antibody titer increasing followed by decrease, suggesting elimination of the epitope. I found that an effective immune response usually correlates with epitopes that are more similar to pathogens. This suggests that the immune system might occupy a limited space and can be effective against only certain epitopes that have similarity with pathogens. I then participated in the attempt to solve the antibiotic resistance problem by developing a classification algorithm that can distinguish bacterial versus viral infection. This algorithm outperforms other currently available classification methods. Finally, I worked on the concept of deriving a single number to represent all the data on the immunosignature platform. This is in resemblance to the concept of temperature, which is an approximate measurement of whether an individual is healthy. The measure of Immune Entropy was found to work best as a single measurement to describe the immune system information derived from the immunosignature. Entropy is relatively invariant in healthy population, but shows significant differences when comparing healthy donors with patients either infected with a pathogen or have cancer.
ContributorsWang, Lu (Author) / Johnston, Stephen (Thesis advisor) / Stafford, Phillip (Committee member) / Buetow, Kenneth (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2018
156131-Thumbnail Image.png
Description
Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a

Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a cell culture medium or in blood. Hence DNs denature promptly when injected into living systems. Another important factor is the presence of nucleases that cause fast degradation of unprotected DNs. The third factor is ‘opsonization’ which is the immune process by which phagocytes target foreign particles introduced into the bloodstream. The primary aim of this thesis is to design strategies that can improve the in vivo stability of DNs, thus improving their pharmacodynamics and biodistribution.

Several strategies were investigated to address the three previously mentioned limitations. The first attempt was to study the effect length and conformation of polyethylene glycol (PEG) on DN stability. DNs were also coated with PEG-lipid and human serum albumin (HSA) and their stealth efficiencies were compared. The findings reveal that both PEGylation and albumin coating enhance low salt stability, increase resistance towards nuclease action and reduce uptake of DNs by macrophages. Any protective coating around a DN increases its hydrodynamic radius, which is a crucial parameter influencing their clearance. Keeping this in mind, intrinsically stable DNs that can survive low salt concentration without any polymer coating were built. Several DNA compaction agents and DNA binders were screened to stabilize DNs in low magnesium conditions. Among them arginine, lysine, bis-lysine and hexamine cobalt showed the potential to enhance DN stability.

This thesis also presents a sensitive assay, the Proximity Ligation Assay (PLA), for the estimation of DN stability with time. It requires very simple modifications on the DNs and it can yield precise results from a very small amount of sample. The applicability of PLA was successfully tested on several DNs ranging from a simple wireframe tetrahedron to a 3D origami and the protocol to collect in vivo samples, isolate the DNs and measure their stability was developed.
ContributorsBanerjee, Saswata (Author) / Yan, Hao (Thesis advisor) / Angell, Austen (Committee member) / Woodbury, Neal (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2018
158683-Thumbnail Image.png
Description
This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified

This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified protein was dimeric as shown by native polyacrylamide gel electrophoresis and small angle X-ray scattering (SAXS) analysis, with an abundance of β-strands based on circular dichroism spectroscopy. SAXS data supports the presence of a pore. Furthermore, protein crystals of membrane translocated FopA were obtained with preliminary X-ray diffraction data. The identified crystallization condition provides the means towards FopA structure determination; a valuable tool for structure-based design of anti-tularemia therapeutics.

Next, the nonstructural protein μNS of avian reoviruses was investigated using in vivo crystallization and serial femtosecond X-ray crystallography. Avian reoviruses infect poultry flocks causing significant economic losses. μNS is crucial in viral factory formation facilitating viral replication within host cells. Thus, structure-based targeting of μNS has the potential to disrupt intracellular viral propagation. Towards this goal, crystals of EGFP-tagged μNS (EGFP-μNS (448-605)) were produced in insect cells. The crystals diffracted to 4.5 Å at X-ray free electron lasers using viscous jets as crystal delivery methods and initial electron density maps were obtained. The resolution reported here is the highest described to date for μNS, which lays the foundation towards its structure determination.

Finally, structural, and functional studies of human Threonine aspartase 1 (Taspase1) were performed. Taspase1 is overexpressed in many liquid and solid malignancies. In the present study, using strategic circular permutations and X-ray crystallography, structure of catalytically active Taspase1 was resolved. The structure reveals the conformation of a 50 residues long fragment preceding the active side residue (Thr234), which has not been structurally characterized previously. This fragment adopted a straight helical conformation in contrast to previous predictions. Functional studies revealed that the long helix is essential for proteolytic activity in addition to the active site nucleophilic residue (Thr234) mediated proteolysis. Together, these findings enable a new approach for designing anti-cancer drugs by targeting the long helical fragment.
ContributorsNagaratnam, Nirupa (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2020
161707-Thumbnail Image.png
Description
Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to

Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to capture the complex network of molecular interactions presented in various biological states such as disease or cancer. Aptamers and enriched libraries have vast applications in bio-sensing, therapeutics, targeted drug delivery, biomarker discovery, and assay development. Here I describe a novel method of computational biophysical characterization of molecular interactions between a single aptamer and its cognate target as well as an alternative to next generation sequencing (NGS) as a readout for a SELEX-based assay. I demonstrate the capability of an artificial neural network (ANN) trained on the results of screening an aptamer against a random sampling of a combinatorial library of short synthetic 11mer peptides to accurately predict the binding intensities of that aptamer to the remainder of the combinatorial space originally sampled. This machine learned comprehensive non-linear relationship between amino acid sequence and aptamer binding to synthetic peptides can also make biologically relevant predictions for probable molecular interactions between the aptamer and its cognate target. Results of SELEX-based assays are determined by quantifying the presence and frequency of informative species after probing patient specimen. Here I show the potential of DNA microarrays to simultaneously monitor a pool of informative sequences within a diverse library with similar variability and reproducibility as NGS.
ContributorsLevenberg, Symon (Author) / Woodbury, Neal (Thesis advisor) / Borges, Chad (Committee member) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
161665-Thumbnail Image.png
Description
Urban areas across the Unites States are facing a housing affordability crisis. One approach some cities and states have taken is to reduce or eliminate single-family zoning. Single-family zoning prevents the construction of more-affordable apartments in vast swaths of the American urban landscape. This policy shift has already occurred in

Urban areas across the Unites States are facing a housing affordability crisis. One approach some cities and states have taken is to reduce or eliminate single-family zoning. Single-family zoning prevents the construction of more-affordable apartments in vast swaths of the American urban landscape. This policy shift has already occurred in Minneapolis, Sacramento, and Oregon, and is under discussion in California, Massachusetts, and North Carolina, among others. Independent of any effects on housing affordability, changes to land use will have effects on transport. I evaluate these effects using a microsimulation framework. In order for land use policies to have an effect on transport, they need to first have an effect on land use, so I first build an economic model to simulate where development will occur given a loosening of single-family zoning. Transport outcomes will vary depending on which households live in which parts of the region, so I use an equilibrium sorting model to forecast how residents will re-sort across the region in response to the land use changes induced by new land-use policies. This model also jointly forecasts how many vehicles each household will choose to own. Finally, I apply an activity-based travel demand microsimulation model to forecast the changes in transport associated with the forecast changes from the previous models. I find that while there is opportunity for economically-feasible redevelopment of single-family homes into multifamily structures, the amount of redevelopment that will occur varies greatly depending on the exact expectations of developers about future market conditions. Redevelopment is focused in higher-income neighborhoods. The transport effects of the redevelopment are minimal. Average car ownership across the region does not change hardly at all, although residents of new housing units do have somewhat lower car ownership. Vehicles kilometers traveled, mode choice, and congestion change very little as well. This does not mean that upzoning does not affect transport in general, but that more nuanced proposals may be necessary to promote desirable transport outcomes. Alternatively, the results suggest that upzoning will not worsen transport outcomes, promising for those who support upzoning on affordability grounds.
ContributorsConway, Matthew Wigginton (Author) / Salon, Deborah (Thesis advisor) / Pfeiffer, Deirdre (Committee member) / Fotheringham, A Stewart (Committee member) / van Eggermond, Michael AB (Committee member) / Arizona State University (Publisher)
Created2021
158847-Thumbnail Image.png
Description
RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding

RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding of enzymatic pathways. First, sensors for detecting arbitrary target RNAs based the fluorogenic RNA aptamer Broccoli are designed and validated. Studies of three different sensor designs reveal that toehold-initiated Broccoli-based aptasensors provide the lowest signal leakage and highest signal intensity in absence and in presence of the target RNA, respectively. This toehold-initiated design is used for developing aptasensors targeting pathogens. Diagnostic assays for detecting pathogen nucleic acids are implemented by integrating Broccoli-based aptasensors with isothermal amplification methods. When coupling with recombinase polymerase amplification (RPA), aptasensors enable detection of synthetic valley fever DNA down to concentrations of 2 fM. Integration of Broccoli-based aptasensors with nucleic acid sequence-based amplification (NASBA) enables as few as 120 copies/mL of synthetic dengue RNA to be detected in reactions taking less than three hours. Moreover, the aptasensor-NASBA assay successfully detects dengue RNA in clinical samples. Second, RNA scaffolds containing peptide-binding RNA aptamers are employed for programming the synthesis of nonribosomal peptides (NRPs). Using the NRP enterobactin pathway as a model, RNA scaffolds are developed to direct the assembly of the enzymes entE, entB, and entF from E. coli, along with the aryl-carrier protein dhbB from B. subtilis. These scaffolds employ X-shaped RNA motifs from bacteriophage packaging motors, kissing loop interactions from HIV, and peptide-binding RNA aptamers to position peptide-modified NRP enzymes. The resulting RNA scaffolds functionalized with different aptamers are designed and evaluated for in vitro production of enterobactin. The best RNA scaffold provides a 418% increase in enterobactin production compared with the system in absence of the RNA scaffold. Moreover, the chimeric scaffold, with E. coli and B. subtilis enzymes, reaches approximately 56% of the activity of the wild-type enzyme assembly. The studies presented in this dissertation will be helpful for future development of nucleic acid-based assays and for controlling protein interaction for NRPs biosynthesis.
ContributorsTang, Anli (Author) / Green, Alexander (Thesis advisor) / Yan, Hao (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2020
158875-Thumbnail Image.png
Description
Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that

Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that initiated their production. If one could read it, this information can be used to predict B cell epitopes on target antigens in order to design effective epitope driven vaccines, therapies and serological assays. Immunosignature technology captures the specific information content of serum IgG from infected and uninfected individuals on high density microarrays containing ~105 nearly random peptide sequences. Although the sequences of the peptides are chosen to evenly cover amino acid sequence space, the pattern of serum IgG binding to the array contains a consistent signature associated with each specific disease (e.g., Valley fever, influenza) among many individuals. Here, the disease specific but agnostic behavior of the technology has been explored by profiling molecular recognition information for five pathogens causing life threatening infectious diseases (e.g. DENV, WNV, HCV, HBV, and T.cruzi). This was done by models developed using a machine learning algorithm to model the sequence dependence of the humoral immune responses as measured by the peptide arrays. It was shown that the disease specific binding information could be accurately related to the peptide sequences used on the array by the machine learning (ML) models. Importantly, it was demonstrated that the ML models could identify or predict known linear epitopes on antigens of the four viruses. Moreover, the models identified potential novel linear epitopes on antigens of the four viruses (each has 4-10 proteins in the proteome) and of T.cruzi (a eukaryotic parasite which has over 12,000 proteins in its proteome). Finally, the predicted epitopes were tested in serum IgG binding assays such as ELISAs. Unfortunately, the assay results were inconsistent due to problems with peptide/surface interactions. In a separate study for the development of antibody recruiting molecules (ARMs) to combat microbial infections, 10 peptides from the high density peptide arrays were tested in IgG binding assays using sera of healthy individuals to find a set of antibody binding termini (ABT, a ligand that binds to a variable region of the IgG). It was concluded that one peptide (peptide 7) may be used as a potential ABT. Overall, these findings demonstrate the applications of the immunosignature technology ranging from developing tools to predict linear epitopes on pathogens of small to large proteomes to the identification of an ABT for ARMs.
ContributorsCHOWDHURY, ROBAYET (Author) / Woodbury, Neal (Thesis advisor) / LaBaer, Joshua (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2020