Matching Items (76)
129097-Thumbnail Image.png
Description

Background: Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose–response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to

Background: Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose–response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to the study of PA across different ethnicities with different PA habits. This systematic review examined the inclusion of published guidelines involving data collection, processing, and reporting among articles using accelerometers or pedometers in Hispanic or Latino populations.

Methods: English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) articles published between 2000 and 2013 using accelerometers or pedometers to measure PA among Hispanics or Latinos were identified through systematic literature searches. Of the 253 abstracts which were initially reviewed, 57 met eligibility criteria (44 accelerometer, 13 pedometer). Articles were coded and reviewed to evaluate compliance with recommended guidelines (N = 20), and the percentage of accelerometer and pedometer articles following each guideline were computed and reported.

Results: On average, 57.1 % of accelerometer and 62.2 % of pedometer articles reported each recommended guideline for data collection. Device manufacturer and model were reported most frequently, and provision of instructions for device wear in Spanish was reported least frequently. On average, 29.6 % of accelerometer articles reported each guideline for data processing. Definitions of an acceptable day for inclusion in analyses were reported most frequently, and definitions of an acceptable hour for inclusion in analyses were reported least frequently. On average, 18.8 % of accelerometer and 85.7 % of pedometer articles included each guideline for data reporting. Accelerometer articles most frequently included average number of valid days and least frequently included percentage of wear time.

Discussion: Inclusion of standard collection and reporting procedures in studies using continuous monitoring devices in Hispanic or Latino population is generally low.

ContributorsLayne, Charles S. (Author) / Parker, Nathan H. (Author) / Soltero, Erica G. (Author) / Rosales Chavez, Jose (Author) / O'Connor, Daniel P. (Author) / Gallagher, Martina R. (Author) / Lee, Rebecca (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18
128789-Thumbnail Image.png
Description

Resource-poor social environments predict poor health, but the mechanisms and processes linking the social environment to psychological health and well-being remain unclear. This study explored psychosocial mediators of the association between the social environment and mental health in African American adults. African American men and women (n = 1467) completed

Resource-poor social environments predict poor health, but the mechanisms and processes linking the social environment to psychological health and well-being remain unclear. This study explored psychosocial mediators of the association between the social environment and mental health in African American adults. African American men and women (n = 1467) completed questionnaires on the social environment, psychosocial factors (stress, depressive symptoms, and racial discrimination), and mental health. Multiple-mediator models were used to assess direct and indirect effects of the social environment on mental health. Low social status in the community (p < .001) and U.S. (p < .001) and low social support (p < .001) were associated with poor mental health. Psychosocial factors significantly jointly mediated the relationship between the social environment and mental health in multiple-mediator models. Low social status and social support were associated with greater perceived stress, depressive symptoms, and perceived racial discrimination, which were associated with poor mental health. Results suggest the relationship between the social environment and mental health is mediated by psychosocial factors and revealed potential mechanisms through which social status and social support influence the mental health of African American men and women. Findings from this study provide insight into the differential effects of stress, depression and discrimination on mental health. Ecological approaches that aim to improve the social environment and psychosocial mediators may enhance health-related quality of life and reduce health disparities in African Americans.

Created2016-04-27
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
128810-Thumbnail Image.png
Description

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Youngbull, Cody (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2012-03-22
128661-Thumbnail Image.png
Description

Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism

Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D) imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1) their ability to rotate biological cells in a stable and precise manner; and (2) their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV) was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.

ContributorsZhang, Wenjie (Author) / Frakes, David (Author) / Babiker, Haithem (Author) / Chao, Shih-hui (Author) / Youngbull, Cody (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2012-06-15
Description
As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities

As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities in Maricopa County. This project employs a curriculum designed to promote physical activity and healthy eating for Early Care and Education (ECE) sites, most of which are daycares. Further, utilizing indicators of future health can also allow for us to understand and lower obesity rates. One indicator of future health is grip strength: greater grip strength is associated with healthier outcomes such as lower triglycerides, blood pressure, and body mass index. Grip strength has been observed in the older population; however, there are few studies looking at grip strength in younger children, namely preschoolers. As grip strength is a predictor of health, it follows that it should be observed in preschoolers, and improved, if possible, by factors such as physical activity, which would ultimately improve obesity rates. This study aimed to see if there was any relationship between physical activity and grip strength in preschoolers aged 3-5 years old. To do so, grip strength, hand length, height, weight, and information regarding physical activity of preschoolers enrolled in the SAGE project were collected. Physical activity and grip strength were not found to be significantly associated in this study; however, hand length and hand strength were associated. Among secondary outcomes, it was observed that males of ages 3 to 5-years-old may have greater hand grip strength than females of the same age group. Although this was not statistically significant, there was a trend toward statistical significance. Small sample size hampered observation of expected relationships between hand grip strength and dominant hand of the participants, and hand grip strength was not significantly related with BMI. Future directions would consist of collecting longitudinal data, as well as calling back previous years’ participants for additional data, so that there is a larger sample size for data analysis.
ContributorsAtluri, Haarika (Author) / Lee, Rebecca (Thesis director) / Tucker, Derek (Committee member) / Cantu Garcia, Lisbeth (Committee member) / De Mello, Gabrielli (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05