Matching Items (113)
128669-Thumbnail Image.png
Description

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were obtained in cultures grown in a bubble column photobioreactor (Ø 3.0 cm inner diameter), resulting in a fucoxanthin volumetric productivity of 7.96 mg L-1 day-1. A slight reduction in biomass production was observed in the scaling up of O. aurita culture in a flat plate photobioreactor, yet yielded a comparable fucoxanthin volumetric productivity. A rapid method was developed for extraction and purification of fucoxanthin. The purified fucoxanthin was identified as all-trans-fucoxanthin, which exhibited strong antioxidant properties, with the effective concentration for 50% scavenging (EC50) of 1,1-dihpenyl-2-picrylhydrazyl (DPPH) radical and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical being 0.14 and 0.03 mg mL-1, respectively. Our results suggested that O. aurita can be a natural source of fucoxanthin for human health and nutrition.

ContributorsXia, Song (Author) / Wang, Ke (Author) / Wan, Linglin (Author) / Li, Aifen (Author) / Hu, Qiang (Author) / Zhang, Chengwu (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-07-23
141485-Thumbnail Image.png
Description

Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence

Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area.

ContributorsShibata, Kazuhisa (Author) / Chang, Li-Hung (Author) / Kim, Dongho (Author) / Nanez, Jose (Author) / Kamitani, Yukiyasu (Author) / Watanabe, Takeo (Author) / Sasaki, Yuka (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2012-08-28
Description
Cycling is the most energy efficient mode of transportation. Bikes are critical for addressing climate change, and contribute to a more active population, safer streets, and lower household expenditures on transportation. Given this, understanding how existing cycling infrastructure is being used, including where and when, helps decision makers know what

Cycling is the most energy efficient mode of transportation. Bikes are critical for addressing climate change, and contribute to a more active population, safer streets, and lower household expenditures on transportation. Given this, understanding how existing cycling infrastructure is being used, including where and when, helps decision makers know what to invest in. This project does exactly that, counting cyclists and other active travel users in the city of Tempe across a whole day, and across the whole north of the city. Cycling in Tempe is already attractive in some areas of the city, but not others. The findings from this project were shared with stakeholders and community members in an interactive web map.
ContributorsLemarchand, Dorian (Author) / Salon, Deborah (Thesis director) / Jamme, Hue-Tam (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2024-05