Matching Items (54)
Filtering by

Clear all filters

128564-Thumbnail Image.png
Description

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects.

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies.

ContributorsGlastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Liebig, Juergen (Author) / Goodisman, Michael A. D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-16
128541-Thumbnail Image.png
Description

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species name Candidatus Tokpelaia hoelldoblerii. A phylogenetic analysis reveals a relationship to Bartonella and Brucella, which infect mammals. Novel gene acquisitions include a gene for a putative extracellular protein of more than 6,000 amino acids secreted by the type I secretion system, which may be involved in attachment to the gut epithelium. No genes for nitrogen fixation could be identified, but genes for a multi-subunit urease protein complex are present in the genome. The urease genes are also present in Brucella, which has a fecal-oral transmission pathway, but not in Bartonella, which use blood-borne transmission pathways. We hypothesize that the gain and loss of the urease function is related to transmission strategies and lifestyle changes in the host-associated members of the Rhizobiales.

ContributorsNeuvonen, Minna-Maria (Author) / Tamarit, Daniel (Author) / Naslund, Kristina (Author) / Liebig, Juergen (Author) / Feldhaar, Heike (Author) / Moran, Nancy A. (Author) / Guy, Lionel (Author) / Andersson, Siv G. E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-15
128478-Thumbnail Image.png
Description

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives,

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.

ContributorsZhou, Xiaofan (Author) / Rokas, Antonis (Author) / Berger, Shelley L. (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / Zwiebel, Laurence J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-12
128231-Thumbnail Image.png
Description

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.

ContributorsTerrapon, Nicolas (Author) / Li, Cai (Author) / Robertson, Hugh M. (Author) / Ji, Lu (Author) / Meng, Xuehong (Author) / Booth, Warren (Author) / Chen, Zhensheng (Author) / Childers, Christopher P. (Author) / Glastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Gowin, Johannes (Author) / Gronenberg, Wulfila (Author) / Hermansen, Russell A. (Author) / Hu, Haofu (Author) / Hunt, Brendan G. (Author) / Huylmans, Ann Kathrin (Author) / Khalil, Sayed M. S. (Author) / Mitchell, Robert D. (Author) / Munoz-Torres, Monica C. (Author) / Mustard, Julie (Author) / Pan, Hailin (Author) / Reese, Justin T. (Author) / Scharf, Michael E. (Author) / Sun, Fengming (Author) / Vogel, Heiko (Author) / Xiao, Jin (Author) / Yang, Wei (Author) / Yang, Zhikai (Author) / Yang, Zuoquan (Author) / Zhou, Jiajian (Author) / Zhu, Jiwei (Author) / Brent, Colin S. (Author) / Elsik, Christine G. (Author) / Goodisman, Michael A. D. (Author) / Liberles, David A. (Author) / Roe, R. Michael (Author) / Vargo, Edward L. (Author) / Vilcinskas, Andreas (Author) / Wang, Jun (Author) / Bornberg-Bauer, Erich (Author) / Korb, Judith (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-05-20