Matching Items (39)
152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
ContributorsOlivera-Aguilar, Margarita (Author) / Millsap, Roger E. (Thesis advisor) / Levy, Roy (Committee member) / MacKinnon, David (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2013
151964-Thumbnail Image.png
Description
5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose- dependently attenuated cue-primed reinstatement, without affecting cocaine-primed reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR agonist, to investigate whether these compounds interact to attenuate cocaine hyperlocomotion and Fos protein expression. Only the drug combination attenuated cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5- HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR agonism.
ContributorsPockros, Lara Ann (Author) / Neisewander, Janet L (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
151330-Thumbnail Image.png
Description
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The current study directly tested this hypothesis, examining the cognitive effects of androstenedione administration in a rodent model. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione (4 or 8 mg/kg daily). Rats were tested on a spatial working and reference memory maze battery including the water radial arm maze, Morris maze, and delay-match-to-sample task. Results showed that androstenedione at the highest dose impaired reference memory and working memory, including ability to maintain performance as memory demand was elevated. The latter was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. Glutamic acid decarboxylase (GAD) levels were measured in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system mediates androstenedione's cognitive impairments. Results showed that higher entorhinal cortex GAD levels were correlated with poorer Morris maze performance, regardless of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle deplete ovary, is detrimental to spatial learning, reference memory, and working memory, and that spatial reference memory performance might be related to the GABAergic system.
ContributorsCamp, Bryan Walter (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Arizona State University (Publisher)
Created2012
151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
151615-Thumbnail Image.png
Description
Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats,

Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats, termed a PPI recovery, and is observable 28 days after treatment. The aim of the current project is to illuminate the underlying mechanism for this persistent change of behavior and determine the clinical relevance of repeated D2-like agonist treatment. Our results revealed a significant increase in Delta FosB, a transcription factor, in the nucleus accumbens (NAc) 10 days after repeated D2-like agonist treatment. Additionally, we investigated if Delta FosB was necessary for long-lasting PPI recovery and discovered a bilateral infusion of dominant-negative Delta JunD prevented PPI recovery after repeated D2-like agonist treatment. To further develop the underlying mechanism of PPI recovery, we observed that dominant negative mutant cyclic adenosine monophosphate (cAMP) response biding element protein (CREB) prevented repeated D2-like agonist-induced Delta FosB expression in the NAc. We then compared our previous behavioral and intracellular findings to the results of repeated aripiprazole, a novel D2-like partial agonist antipsychotic, to determine if repeated D2-like receptor agonist action is a clinically relevant pharmacological approach. As compared to previous PPI recovery and Delta FosB expression after repeated D2-like agonist treatment, we found similar PPI recovery and Delta FosB expression after repeated aripiprazole treatment in rats. We can conclude that repeated D2-like agonist treatment produces persistent PPI recovery through CREB phosphorylation and Delta FosB, which is necessary for PPI recovery. Furthermore, this pharmacological approach produces behavioral and intracellular changes similar to an effective novel antipsychotic. These findings suggest the underlying intracellular mechanism for sustained PPI recovery is clinically relevant and may be a potential target of therapeutic intervention to alleviate sensorimotor gating deficits, which are associated with cognitive symptoms of schizophrenia.
ContributorsMaple, Amanda (Author) / Hammer, Ronald P. (Thesis advisor) / Olive, Michael F (Committee member) / Gallitano, Amelia L (Committee member) / Conrad, Cheryl D. (Committee member) / Nikulina, Ella M (Committee member) / Arizona State University (Publisher)
Created2013
151501-Thumbnail Image.png
Description
Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.
ContributorsLiu, Yu (Author) / West, Stephen G. (Thesis advisor) / Enders, Craig K. (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
152985-Thumbnail Image.png
Description
Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.
ContributorsMiocevic, Milica (Author) / Mackinnon, David P. (Thesis advisor) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2014
153052-Thumbnail Image.png
Description
Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and their infants at greater risk for substantial psychological and developmental

Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and their infants at greater risk for substantial psychological and developmental difficulties. The current study utilized data on perceived stress, depression, maternal parenting behavior, and infant social-emotional and cognitive development from 214 Mexican-American mother-infant dyads. The first analysis approach utilized a latent intercept (LI) model to examine how overall mean levels and within-person deviations of perceived stress, depressive symptoms, and maternal parenting behavior are related across the postpartum period. Results indicated large, positive between- and within-person correlations between perceived stress and depression. Neither perceived stress nor depressive symptoms were found to have significant between- or within-person associations with the parenting variables. The second analysis approach utilized an autoregressive cross-lagged model with tests of mediation to identify underlying mechanisms among perceived stress, postpartum depressive symptoms, and maternal parenting behavior in the prediction of infant social-emotional and cognitive development. Results indicated that increased depressive symptoms at 12- and 18-weeks were associated with subsequent reports of increased perceived stress at 18- and 24-weeks, respectively. Perceived stress at 12-weeks was found to be negatively associated with subsequent non-hostility at 18-weeks, and both sensitivity and non-hostility were found to be associated with infant cognitive development and social-emotional competencies at 12 months of age (52-weeks), but not with social-emotional problems. The results of the mediation analyses showed that non-hostility at 18- and 24-weeks significantly mediated the association between perceived stress at 12-weeks and infant cognitive development and social-emotional competencies at 52-weeks. The findings extend research that sensitive parenting in early childhood is as important to the development of cognitive ability, social behavior, and emotion regulation in ethnic minority cultures as it is in majority culture families; that maternal perceptions of stress may spillover into parenting behavior, resulting in increased hostility and negatively influencing infant cognitive and social-emotional development; and that symptoms of depressed mood may influence the experience of stress.
ContributorsCiciolla, Lucia (Author) / Crnic, Keith A (Thesis advisor) / West, Stephen G. (Thesis advisor) / Luecken, Linda J. (Committee member) / Presson, Clark C. (Committee member) / Arizona State University (Publisher)
Created2014