Matching Items (48)
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
134201-Thumbnail Image.png
Description
Triple-negative breast cancer (TNBC) is defined by the lack of three receptors (estrogen, progesterone, and HER2 receptors) and accounts for 12-17% of breast cancers. TNBC is an aggressive form of the disease associated with high rates of recurrence and mortality within five years. Inhibitor of Growth 4 (ING4)

Triple-negative breast cancer (TNBC) is defined by the lack of three receptors (estrogen, progesterone, and HER2 receptors) and accounts for 12-17% of breast cancers. TNBC is an aggressive form of the disease associated with high rates of recurrence and mortality within five years. Inhibitor of Growth 4 (ING4) is a gene deleted in 16.5% and downregulated in 34% of breast tumors. The correlation between ING4 deficiencies and advanced tumors and poor patient survival implicates its tumor suppressive function in breast cancer. Low ING4 expression has been correlated with NFκB activation in metastatic breast tumors. Moreover, ING4 has been shown to inhibit NFkB-mediated gene transcription in various cancers, suggesting that ING4 may suppress cancer by inhibiting NFkB activation. However, the contribution of ING4 deficiencies and NFkB activation to aggressive TNBC progression is currently not well understood. We investigated the role of ING4 in the MDAmb231 TNBC cell line by genetically engineering the cells to overexpress or delete ING4. Cell growth and sensitivity to the chemotherapeutic agent doxorubicin were evaluated between the ING4-modified cell lines with or without TNFα to activate NFκB. The results showed that cell growths were comparable between the vector controls and ING4 overexpressing or deleted cell lines. In addition, TNFα treatment did not alter the growths of all cell lines, indicating that ING4 with or without NFkB activation did not play a role in determining the growth rates of TNBC. However, ING4 overexpressing cells were 20-30% more sensitive to 10 μM doxorubicin treatment, whereas ING4-deleted cells were 20-50% more resistant, suggesting that ING4 may determine chemotherapy response in TNBC. These findings suggest that tumors with low levels of ING4 may be more resistant to chemotherapy, thus requiring higher dosage and/or additional chemotherapy in patient treatment. Unexpectedly, TNFα sensitized all cell lines to doxorubicin regardless of ING4 expression levels, suggesting a TNFα function outside of NFκB activation in increasing doxorubicin sensitivity. It implicates that TNFα treatment may increase chemotherapy response in TNBC patients.
ContributorsUngor, Ashley Jordyn (Author) / Capco, David (Thesis director) / Kim, Suwon (Committee member) / Compton, Carolyn (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
137663-Thumbnail Image.png
Description
Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may be able to detect high-grade cervical intraepithelial neoplasia (CIN3). Biomarkers have potential as a rapid, point-of-care HPV screening tool for low resource areas in the way that traditional cytology cannot, and HPV DNA testing is not yet able to.
Methods: We have designed a multiplexed magnetics programmable bead ELISA (MagProBE) to profile the immune responses of the proteins from 11 high-risk HPV types and 2 low-risk types—106 genes in total. HPV genes were optimized for human expression and either built with PCR or commercially purchased, and cloned into the Gateway-compatible pANT7_cGST vector for in vitro transcription/translation (IVTT) in a MagProBE array. Anti-GST antibody (Ab) labeling was then used to measure gene expression.
Results: 53/106 (50%) HPV genes have been cloned and tested for expression of protein. 91% of HPV proteins expressed at levels above the background control (MFI = 2288), and the mean expression was MFI = 4318. Codon-optimized genes have also shown a 20% higher expression over non-codon optimized genes.
Conclusion: Although this research is ongoing, it suggests that gene optimization may improve IVTT expression of HPV proteins in human HeLa lysate. Once the remaining HPV proteins have been expression confirmed, the cDNA for each gene will be printed onto slides and tested in serologic assays to identify potential Ab biomarkers to CIN3.
ContributorsResnik, Jack Isiah (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Purushothaman, Immanuel (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
147893-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsQian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / English, Corinne (Co-author) / Agee, Claire (Co-author) / Mattson, Kyle (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147895-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsEnglish, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Mattson, Kyle (Co-author) / Agee, Claire (Co-author) / Qian, Michael (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147906-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsAgee, Claire (Co-author) / English, Corinne (Co-author) / Mattson, Kyle (Co-author) / Qian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147907-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsMattson, Kyle (Co-author) / Agee, Claire (Co-author) / English, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148134-Thumbnail Image.png
Description

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it had to meet various legal criteria. These major legal considerations, in no particular order, are: Clinical Laboratory Improvement Amendments compliance; FDA Emergency Use Authorization (EUA); Health Insurance Portability and Accountability Act compliance; state licensure; patient, state, and federal result reporting; and liability. <br/>In this paper, the EUA pathway will be examined and contextualized in relation to the ABCTL. This will include an examination of the FDA regulations and policies that affect the laboratory during its operations, as well as a look at the different authorization pathways for diagnostic tests present during the COVID-19 pandemic.

ContributorsJenkins, Landon James (Co-author) / Espinoza, Hale Anna (Co-author) / Filipek, Marina (Co-author) / Ross, Nathaniel (Co-author) / Salvatierra, Madeline (Co-author) / Compton, Carolyn (Thesis director) / Rigoni, Adam (Committee member) / Stanford, Michael (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05