Matching Items (39)
152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
152386-Thumbnail Image.png
Description
In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this

In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this research is represented by four interrelated issues. (1) An in-depth study describes combined photo-induced and thermionic emission from nitrogen-doped diamond films on molybdenum substrates, which were illuminated with visible light photons, and the electron emission spectra were recorded as a function of temperature. The diamond films displayed significant emissivity with a low work function of ~ 1.5 eV. The results indicate that these diamond emitters can be applied in combined solar and thermal energy conversion. (2) The nitrogen-doped diamond was further investigated to understand the physical mechanism and material-related properties that enable the combined electron emission. Through analysis of the spectroscopy, optical absorbance and photoelectron microscopy results from sample sets prepared with different configurations, it was deduced that the photo-induced electron generation involves both the ultra-nanocrystalline diamond and the interface between the diamond film and metal substrate. (3) Based on results from the first two studies, possible photon-enhanced thermionic emission was examined from nitrogen-doped diamond films deposited on silicon substrates, which could provide the basis for a novel approach for concentrated solar energy conversion. A significant increase of emission intensity was observed at elevated temperatures, which was analyzed using computer-based modeling and a combination of different emission mechanisms. (4) In addition, the electronic structure of vanadium-oxide-terminated diamond surfaces was studied through in-situ photoemission spectroscopy. Thin layers of vanadium were deposited on oxygen-terminated diamond surfaces which led to oxide formation. After thermal annealing, a negative electron affinity was found on boron-doped diamond, while a positive electron affinity was found on nitrogen-doped diamond. A model based on the barrier at the diamond-oxide interface was employed to analyze the results. Based on results of this dissertation, applications of diamond-based energy conversion devices for combined solar- and thermal energy conversion are proposed.
ContributorsSun, Tianyin (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Peng, Xihong (Committee member) / Spence, John (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2013
150778-Thumbnail Image.png
Description
This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.
ContributorsBalascuta, Septimiu (Author) / Alarcon, Ricardo (Thesis advisor) / Belitsky, Andrei (Committee member) / Doak, Bruce (Committee member) / Comfort, Joseph (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
135853-Thumbnail Image.png
Description
The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends

The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends on the barrier widths and hence does not lead to superluminal tunneling or the Hartman effect.
ContributorsMcDonald, Scott (Author) / Davies, Paul (Thesis director) / Comfort, Joseph (Committee member) / McCartney, M. R. (Committee member) / Barrett, The Honors College (Contributor)
Created2009-05
153785-Thumbnail Image.png
Description
Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high

Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection.

Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly.

This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.
ContributorsJames, Daniel (Author) / Spence, John (Thesis advisor) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2015
155021-Thumbnail Image.png
Description
The superior brightness and ultra short pulse duration of X-ray free electron laser

(XFEL) allows it to outrun radiation damage in coherent diffractive imaging since elastic scattering terminates before photoelectron cascades commences. This “diffract-before-destroy” feature of XFEL opened up new opportunities for biological macromolecule imaging and structure studies by breaking the

The superior brightness and ultra short pulse duration of X-ray free electron laser

(XFEL) allows it to outrun radiation damage in coherent diffractive imaging since elastic scattering terminates before photoelectron cascades commences. This “diffract-before-destroy” feature of XFEL opened up new opportunities for biological macromolecule imaging and structure studies by breaking the limit to spatial resolution imposed by the maximum dose that is allowed before radiation damage. However, data collection in serial femto-second crystallography (SFX) using XFEL is affected by a bunch of stochastic factors, which pose great challenges to the data analysis in SFX. These stochastic factors include crystal size, shape, random orientation, X-ray photon flux, position and energy spectrum. Monte-Carlo integration proves effective and successful in extracting the structure factors by merging all diffraction patterns given that the data set is sufficiently large to average out all stochastic factors. However, this approach typically requires hundreds of thousands of patterns collected from experiments. This dissertation explores both experimental and algorithmic methods to eliminate or reduce the effect of stochastic factors in data acquisition and analysis. Coherent convergent X-ray beam diffraction (CCB) is discussed for possibilities of obtaining single-shot angular-integrated rocking curves. It is also shown the interference between Bragg disks helps ab-initio phasing. Two-color diffraction scheme is proposed for time-resolved studies and general data collection strategies are discussed based on error metrics. A new auto-indexing algorithm for sparse patterns is developed and demonstrated for both simulated and experimental data. Statistics show that indexing rate is increased by 3 times for I3C data set collected from beam time LJ69 at Linac coherent light source (LCLS). Finally, dynamical inversion from electron diffraction is explored as an alternative approach for structure determination.
ContributorsLi, Chufeng (Author) / Spence, John CH (Thesis advisor) / Spence, John (Committee member) / Kirian, Richard (Committee member) / Weierstall, Uwe (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
154965-Thumbnail Image.png
Description
The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.
ContributorsHyde, Jeffrey Morgan (Author) / Vachaspati, Tanmay (Thesis advisor) / Easson, Damien (Committee member) / Belitsky, Andrei (Committee member) / Comfort, Joseph (Committee member) / Arizona State University (Publisher)
Created2016
155145-Thumbnail Image.png
Description
The structure-function relation in Biology suggests that every biological molecule has evolved its structure to carry out a specific function. However, for many of these processes (such as those with catalytic activity) the structure of the biomolecule changes during the course of a reaction. Understanding the structure-function relation thus becomes

The structure-function relation in Biology suggests that every biological molecule has evolved its structure to carry out a specific function. However, for many of these processes (such as those with catalytic activity) the structure of the biomolecule changes during the course of a reaction. Understanding the structure-function relation thus becomes a question of understanding biomolecular dynamics that span a variety of timescales (from electronic rearrangements in the femtoseconds to side-chain alteration in the microseconds and more). This dissertation deals with the study of biomolecular dynamics in the ultrafast timescales (fs-ns) using electron and X-ray probes in both time and frequency domains.

It starts with establishing the limitations of traditional electron diffraction coupled with molecular replacement to study biomolecular structure and proceeds to suggest a pulsed electron source Hollow-Cone Transmission Electron Microscope as an alternative scheme to pursue ultrafast biomolecular imaging. In frequency domain, the use of Electron Energy Loss Spectroscopy as a tool to access ultrafast nuclear dynamics in the steady state, is detailed with the new monochromated NiON UltraSTEM and examples demonstrating this instrument’s capability are provided.

Ultrafast X-ray spectroscopy as a tool to elucidate biomolecular dynamics is presented in studying X-ray as a probe, with the study of the photolysis of Methylcobalamin using time-resolved laser pump – X-ray probe absorption spectroscopy. The analysis in comparison to prior literature as well as DFT based XAS simulations offer good agreement and understanding to the steady state spectra but are so far inadequate in explaining the time-resolved data. However, the trends in the absorption simulations for the transient intermediates show a strong anisotropic dependence on the axial ligation, which would define the direction for future studies on this material to achieve a solution.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Rez, Peter (Committee member) / Alford, Terry (Committee member) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Arizona State University (Publisher)
Created2016