Matching Items (40)
Filtering by

Clear all filters

150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ContributorsBillionniere, Elodie V (Author) / Collofello, James (Thesis advisor) / Ganesh, Tirupalavanam G. (Thesis advisor) / VanLehn, Kurt (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
151802-Thumbnail Image.png
Description
The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this thesis, we present a technique that facilitates filtering of classes from existing systems at the source level based on their relationship to concepts in the domain via a classification method using machine learning. We showed that concepts can be identified using a machine learning classifier based on source level metrics. We developed an Eclipse plugin to assist with the process of manually classifying Java source code, and collecting metrics and classifications into a standard file format. We developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain concept or not. We minimized the size of training sets to ensure a useful approach in practice. This allowed us to determine that a training set of 7:5 to 10% is nearly as effective as a training set representing 50% of the system. We showed that random selection is the most consistent and effective means of selecting a training set. We found that KNN is the most consistent performer among the learning algorithms tested. We determined the optimal feature set for this classification problem. We discussed two possible structures besides a one to one mapping of domain knowledge to implementation. We showed that classes representing more than one concept are simply concepts at differing levels of abstraction. We also discussed composite concepts representing a domain concept implemented by more than one class. We showed that these composite concepts are difficult to detect because the problem is NP-complete.
ContributorsCarey, Maurice (Author) / Colbourn, Charles (Thesis advisor) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
ContributorsVerdicchio, Michael (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Stolovitzky, Gustavo (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
190884-Thumbnail Image.png
Description
Existing machine learning and data mining techniques have difficulty in handling three characteristics of real-world data sets altogether in a computationally efficient way: (1) different data types with both categorical data and numeric data, (2) different variable relations in different value ranges of variables, and (3) unknown variable dependency.This dissertation

Existing machine learning and data mining techniques have difficulty in handling three characteristics of real-world data sets altogether in a computationally efficient way: (1) different data types with both categorical data and numeric data, (2) different variable relations in different value ranges of variables, and (3) unknown variable dependency.This dissertation developed a Partial-Value Association Discovery (PVAD) algorithm to overcome the above drawbacks in existing techniques. It also enables the discovery of partial-value and full-value variable associations showing both effects of individual variables and interactive effects of multiple variables. The algorithm is compared with Association rule mining and Decision Tree for validation purposes. The results show that the PVAD algorithm can overcome the shortcomings of existing methods. The second part of this dissertation focuses on knee point detection on noisy data. This extended research topic was inspired during the investigation into categorization for numeric data, which corresponds to Step 1 of the PVAD algorithm. A new mathematical definition of knee point on discrete data is introduced. Due to the unavailability of ground truth data or benchmark data sets, functions used to generate synthetic data are carefully selected and defined. These functions are subsequently employed to create the data sets for this experiment. These synthetic data sets are useful for systematically evaluating and comparing the performance of existing methods. Additionally, a deep-learning model is devised for this problem. Experiments show that the proposed model surpasses existing methods in all synthetic data sets, regardless of whether the samples have single or multiple knee points. The third section presents the application results of the PVAD algorithm to real-world data sets in various domains. These include energy consumption data of an Arizona State University (ASU) building, Computer Network, and ASU Engineering Freshmen Retention. The PVAD algorithm is utilized to create an associative network for energy consumption modeling, analyze univariate and multivariate measures of network flow variables, and identify common and uncommon characteristics related to engineering student retention after their first year at the university. The findings indicate that the PVAD algorithm offers the advantage and capability to uncover variable relationships.
ContributorsFok, Ting Yan (Author) / Ye, Nong (Thesis advisor) / Iquebal, Ashif (Committee member) / Ju, Feng (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2023
156892-Thumbnail Image.png
Description
With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between

With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes.

This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one another over the course of a conversation. Correlated with liking and task success, a dialogue system which entrains may enhance rapport. Entrainment, however, is very challenging to model. People entrain on different features in many ways and how to design entrainment to build rapport is unclear. The first goal of this dissertation is to explore how acoustic-prosodic entrainment can be modeled to build rapport.

Towards this goal, this work presents a series of studies comparing, evaluating, and iterating on the design of entrainment, motivated and informed by human-human dialogue. These models of entrainment are implemented in the dialogue system of a robotic learning companion. Learning companions are educational agents that engage students socially to increase motivation and facilitate learning. As a learning companion’s ability to be socially responsive increases, so do vital learning outcomes. A second goal of this dissertation is to explore the effects of entrainment on concrete outcomes such as learning in interactions with robotic learning companions.

This dissertation results in contributions both technical and theoretical. Technical contributions include a robust and modular dialogue system capable of producing prosodic entrainment and other socially-responsive behavior. One of the first systems of its kind, the results demonstrate that an entraining, social learning companion can positively build rapport and increase learning. This dissertation provides support for exploring phenomena like entrainment to enhance factors such as rapport and learning and provides a platform with which to explore these phenomena in future work.
ContributorsLubold, Nichola Anne (Author) / Walker, Erin (Thesis advisor) / Pon-Barry, Heather (Thesis advisor) / Litman, Diane (Committee member) / VanLehn, Kurt (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
154632-Thumbnail Image.png
Description
Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This research investigates the different comment semantic features and the effect

Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This research investigates the different comment semantic features and the effect they have on the quality of a post in a large-scale discussion forum. We survey the relevant literature and employ the key content quality identification features. We then construct comment semantics features and build several regression models to explore the value of comment semantics dynamics. The results reconfirm the usefulness of several essential quality predictors, including time, reputation, length, and editorship. We also found that comment semantics are valuable to shape the answer quality. Specifically, the diversity of comments significantly contributes to the answer quality. In addition, when searching for good quality answers, it is important to look for global semantics dynamics (diversity), rather than observe local differences (disputable content). Finally, the presence of comments shepherd the community to revise the posts by attracting attentions to the posts and eventually facilitate the editing process.
ContributorsAggarwal, Adithya (Author) / Hsiao, Ihan (Thesis advisor) / Lopez, Claudia (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016
154120-Thumbnail Image.png
Description
Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.

I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective.
ContributorsMehta, Vishal Vimal (Author) / Hsiao, Ihan (Thesis advisor) / Walker, Erin (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2015
154253-Thumbnail Image.png
Description
Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of

Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of several student models for Dragoon, an intelligent tutoring system. All the models were instances of Bayesian Knowledge Tracing, a standard method. Several methods of parameterization and calibration were explored using two recently developed toolkits, FAST and BNT-SM that replaces constant-valued parameters with logistic regressions. The evaluation was done by calculating the fit of the models to data from human subjects and by assessing the accuracy of their assessment of simulated students. The student models created using node properties as subskills were superior to coarse-grained, skill-only models. Adding this extra level of representation to emission parameters was superior to adding it to transmission parameters. Adding difficulty parameters did not improve fit, contrary to standard practice in psychometrics.
ContributorsGrover, Sachin (Author) / VanLehn, Kurt (Thesis advisor) / Walker, Erin (Committee member) / Shiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2015