Matching Items (46)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
149928-Thumbnail Image.png
Description
The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.
ContributorsTorres Garcia, Wandaliz (Author) / Meldrum, Deirdre R. (Thesis advisor) / Runger, George C. (Thesis advisor) / Gel, Esma S. (Committee member) / Li, Jing (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2011
150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ContributorsBillionniere, Elodie V (Author) / Collofello, James (Thesis advisor) / Ganesh, Tirupalavanam G. (Thesis advisor) / VanLehn, Kurt (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
149702-Thumbnail Image.png
Description
Gene therapy is a promising technology for the treatment of various nonheritable and genetically acquired diseases. It involves delivery of a therapeutic gene into target cells to induce cellular responses against diseases. Successful gene therapy requires an efficient gene delivery vector to deliver genetic materials into target cells. There are

Gene therapy is a promising technology for the treatment of various nonheritable and genetically acquired diseases. It involves delivery of a therapeutic gene into target cells to induce cellular responses against diseases. Successful gene therapy requires an efficient gene delivery vector to deliver genetic materials into target cells. There are two major classes of gene delivery vectors: viral and non-viral vectors. Recently, non-viral vectors such as cationic polymers have attracted more attention than viral vectors because they are versatile and non-immunogenic. However, cationic polymers suffer from poor gene delivery efficiency due to biological barriers. The objective of this research is to develop strategies to overcome the barriers and enhance polymer-mediated transgene expression. This study aimed to (i) develop new polymer vectors for gene delivery, (ii) investigate the intracellular barriers in polymer-mediated gene delivery, and (iii) explore new approaches to overcome the barriers. A cationic polymer library was developed by employing a parallel synthesis and high-throughput screening method. Lead polymers from the library were identified from the library based on relative levels of transgene expression and toxicity in PC3-PSMA prostate cancer cells. However, transgene expression levels were found to depend on intracellular localization of polymer-gene complexes (polyplexes). Transgene expression was higher when polyplexes were dispersed rather than localized in the cytoplasm. Combination treatments using small molecule chemotherapeutic drugs, e.g. histone deacetylase inhibitors (HDACi) or Aurora kinase inhibitor (AKI) increased dispersion of polyplexes in the cytoplasm and significantly enhanced transgene expression. The combination treatment using polymer-mediated delivery of p53 tumor-suppressor gene and AKI increased p53 expression in PC3-PSMA cells, inhibited the cell proliferation by ~80% and induced apoptosis. Polymer-mediated p53 gene delivery in combination with AKI offers a promising treatment strategy for in vivo and clinical studies of cancer gene therapy.
ContributorsBarua, Sutapa (Author) / Rege, Kaushal (Thesis advisor) / Dai, Lenore (Committee member) / Meldrum, Deirdre R. (Committee member) / Sierks, Michael (Committee member) / Voelkel-Johnson, Christina (Committee member) / Arizona State University (Publisher)
Created2011
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151802-Thumbnail Image.png
Description
The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this thesis, we present a technique that facilitates filtering of classes from existing systems at the source level based on their relationship to concepts in the domain via a classification method using machine learning. We showed that concepts can be identified using a machine learning classifier based on source level metrics. We developed an Eclipse plugin to assist with the process of manually classifying Java source code, and collecting metrics and classifications into a standard file format. We developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain concept or not. We minimized the size of training sets to ensure a useful approach in practice. This allowed us to determine that a training set of 7:5 to 10% is nearly as effective as a training set representing 50% of the system. We showed that random selection is the most consistent and effective means of selecting a training set. We found that KNN is the most consistent performer among the learning algorithms tested. We determined the optimal feature set for this classification problem. We discussed two possible structures besides a one to one mapping of domain knowledge to implementation. We showed that classes representing more than one concept are simply concepts at differing levels of abstraction. We also discussed composite concepts representing a domain concept implemented by more than one class. We showed that these composite concepts are difficult to detect because the problem is NP-complete.
ContributorsCarey, Maurice (Author) / Colbourn, Charles (Thesis advisor) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
ContributorsVerdicchio, Michael (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Stolovitzky, Gustavo (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
152397-Thumbnail Image.png
Description
This thesis research focuses on phylogenetic and functional studies of microbial communities in deep-sea water, an untapped reservoir of high metabolic and genetic diversity of microorganisms. The presence of photosynthetic cyanobacteria and diatoms is an interesting and unexpected discovery during a 16S ribosomal rRNA-based community structure analyses for microbial communities

This thesis research focuses on phylogenetic and functional studies of microbial communities in deep-sea water, an untapped reservoir of high metabolic and genetic diversity of microorganisms. The presence of photosynthetic cyanobacteria and diatoms is an interesting and unexpected discovery during a 16S ribosomal rRNA-based community structure analyses for microbial communities in the deep-sea water of the Pacific Ocean. Both RT-PCR and qRT-PCR approaches were employed to detect expression of the genes involved in photosynthesis of photoautotrophic organisms. Positive results were obtained and further proved the functional activity of these detected photosynthetic microbes in the deep-sea. Metagenomic and metatranscriptomic data was obtained, integrated, and analyzed from deep-sea microbial communities, including both prokaryotes and eukaryotes, from four different deep-sea sites ranging from the mesopelagic to the pelagic ocean. The RNA/DNA ratio was employed as an index to show the strength of metabolic activity of deep-sea microbes. These taxonomic and functional analyses of deep-sea microbial communities revealed a `defensive' life style of microbial communities living in the deep-sea water. Pseudoalteromonas sp.WG07 was subjected to transcriptomic analysis by application of RNA-Seq technology through the transcriptomic annotation using the genomes of closely related surface-water strain Pseudoalteromonas haloplanktis TAC125 and sediment strain Pseudoalteromonas sp. SM9913. The transcriptome survey and related functional analysis of WG07 revealed unique features different from TAC125 and SM9913 and provided clues as to how it adapted to its environmental niche. Also, a comparative transcriptomic analysis of WG07 revealed transcriptome changes between its exponential and stationary growing phases.
ContributorsWu, Jieying (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Abbaszadegan, Morteza (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2013