Matching Items (116)
135342-Thumbnail Image.png
Description
Arizona and Florida are unique venues are they are the only two locations in the world to host the preseason leagues known as Spring Training for all thirty Major League Baseball teams. With fan bases willing to travel and spend disposable income to follow their favorite teams and/or escape the

Arizona and Florida are unique venues are they are the only two locations in the world to host the preseason leagues known as Spring Training for all thirty Major League Baseball teams. With fan bases willing to travel and spend disposable income to follow their favorite teams and/or escape the cold spells of their home state, the sports and tourism industries in Arizona and Florida have been able to captivate a status as top spring destinations. This study takes a focus on the economic impact that Spring Training in March has on the state of Arizona; specifically the Phoenix Metropolitan area. Consumer research is presented and a SWOT analysis is generated to further assess the condition of the Cactus League and Arizona as a host state. An economic impact study driven by the Strengths, Weaknesses, Opportunities & Threats (SWOT) analysis method is the primary focuses of research due to the sum and quality of usable data that can be organized using the SWOT structure. The scope of this research aims to support the argument that Spring Training impacts the host city in which it resides in. In conjunction with the SWOT analysis, third parties will be able to get a sense of the overall effectiveness and impact of Cactus League Spring Training in the Valley of the Sun. Integration of findings from a Tampa Bay sight visit will also be assessed to determine the health of the competition. This study will take an interdisciplinary approach as it views the topics at hand from the lenses of the consumer, baseball professional, and investor.
ContributorsOlden, Kyle (Co-author) / Farmer, James (Co-author) / Eaton, John (Thesis director) / Mokwa, Michael (Committee member) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / College of Public Service and Community Solutions (Contributor) / Department of Information Systems (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135447-Thumbnail Image.png
Description
This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and

This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and their experiences within the healthcare system in the context of their sexual orientation. The data collected from these interviews was used to create an analysis of the healthcare experiences of those who identify as queer. Although the original intention of the project was to chronicle the experiences of LGB women specifically, there were four non-binary gender respondents who contributed interviews. In an effort to not privilege any orientation over another, the respondents were collectively referred to as queer, given the inclusive and an encompassing nature of the term. The general conclusion of this study is that respondents most often experienced heterosexism rather than outright homophobia when accessing healthcare. If heterosexism was present within the healthcare setting, it made respondents feel uncomfortable with their providers and less likely to inform them of their sexuality even if it was medically relevant to their health outcomes. Gender, race, and,socioeconomic differences also had an effect on the patient-provider relationship. Non-binary respondents acknowledged the need for inclusion of more gender options outside of male or female on the reporting forms often seen in medical offices. By doing so, medical professionals are acknowledging their awareness and knowledge of people outside of the binary gender system, thus improving the experience of these patients. While race and socioeconomic status were less relevant to the context of this study, it was found that these factors have an affect on the patient-provider relationship. There are many suggestions for providers to improve the experiences of queer patients within the healthcare setting. This includes nonverbal indications of acknowledgement and acceptance, such as signs in the office that indicate it to be a queer friendly space. This will help in eliminating the fear and miscommunication that can often happen when a queer patient sees a practitioner for the first time. In addition, better education on medically relevant topics to queer patients, is necessary in order to eliminate disparities in health outcomes. This is particularly evident in trans health, where specialized education is necessary in order to decrease poor health outcomes in trans patients. Future directions of this study necessitate a closer look on how race and socioeconomic status have an effect on a queer patient's relationship with their provider.
Created2016-05
135200-Thumbnail Image.png
Description
Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't,

Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't, playing with the pacing of overall seasons as well as the length of episodes. So, too, Netflix has been at the forefront of increasing visibility for minority characters on television. Many of its shows incorporate racially diverse casts and depict lots of LGBTQ characters, a refreshingly realistic view of the world that many of its viewers have always lived in but haven't yet witnessed on television. Visibility and representation are critical concepts for analyzing minority characters on television. It is important for diverse characters to be seen, first and foremost, but also to be seen in positive or at least realistic lights. Care must be taken to avoid fulfilling stereotypes or tropes, and attention must be paid to what has happened to other characters who have come before. However, many of Netflix's portrayals of these characters, particularly bisexual characters, leave much to be desired. With the original dramas House of Cards, Hemlock Grove, Orange is the New Black, and Sense8, all of which include characters who identify as or behave bisexually, Netflix has been reluctant to use the specific word bisexual to describe characters, and many don't even identify their sexuality with a synonym for the term. Many of the bisexual characters that I identified died or were killed on the shows, and nearly all of them fulfilled stereotypes or tropes in some way. There were multiple scenes of threesomes or other distinctly kinky sexual encounters, which served to exoticize bisexuality and distance it from the more normatively viewed identities of heterosexuality and homosexuality. Ultimately, while Netflix's original programming has offered increased visibility to bisexual characters, it has yet to reflect the real community it seeks to portray. In particular, Netflix's refusal to label characters as bisexual is frustrating and limiting. It can be argued that this is a progressive move toward more ideas of sexual fluidity and a post-modern lack of sexual labels, but there are not enough depictions of identified bisexual characters on television yet for this to make sense. Until bisexual characters and their identities are not invisibilized or stigmatized, more work has to be done to ensure that bisexual people are represented fairly and accurately on television and in all media.
Created2016-05
Description
Yellowstone National Park has a vibrant variety of flora, fauna, and hydrothermal systems all collected together in one large and complex system. Studies have been conducted for at least several decades in order to make sense of this system in ways that may be relevant to other similar geologies around

Yellowstone National Park has a vibrant variety of flora, fauna, and hydrothermal systems all collected together in one large and complex system. Studies have been conducted for at least several decades in order to make sense of this system in ways that may be relevant to other similar geologies around the world. The latest update in this ever-ongoing study involves the collection and analysis of water samples from 2016. These samples have been analyzed for conductivity, pH, temperature, dissolved organic carbon, dissolved inorganic carbon, carbon isotopes, dissolved oxygen, ferrous iron, sulfide, silica, and more. While not many trends were found in this data in regards to dissolved organic carbon values, this is a substantial addition to a growing body of information that could yield more impressive information in times to come. In addition, factors that have yet to analyzed for this 2016 data, such as concentrations of metals and metalloids, may provide some insights when put through a chloride vs sulfate framework to separate out different reaction regions.
ContributorsDoan, Cuong Le (Author) / Shock, Everett (Thesis director) / Gould, Ian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
171585-Thumbnail Image.png
Description
I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years.

I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years. These conditions create the perfect natural laboratory for assessing life at the extremes of habitability. All known life needs water; however, the extraordinarily dry Atacama Desert is inhabited by well-adapted microorganisms capable of colonizing this hostile environment. I show field and laboratory evidence of an environmental process, water vapor adsorption, that provides a daily, sustainable input of water into the near (3 - 5 cm) subsurface through water vapor-soil particle interactions. I estimate that this water input may rival the yearly average input of rain in these soils (~2 mm). I also demonstrate, for the first time, that water vapor adsorption is dependent on mineral composition via a series of laboratory water vapor adsorption experiments. The results of these experiments provide evidence that mineral composition, and ultimately soil composition, measurably and significantly affect the equilibrium soil water content. This suggests that soil microbial communities may be extremely heterogeneous in distribution depending on the distribution of adsorbent minerals. Finally, I present changes in biologically relevant gasses (i.e., H2, CH4, CO, and CO2) over long-duration incubation experiments designed to assess the potential for biological activity in soils collected from a hyperarid region in the Atacama Desert. These long-duration experiments mimicked typical water availability conditions in the Atacama Desert; in other words, the incubations were performed without condensed water addition. The results suggest a potential for methane-production in the live experiments relative to the sterile controls, and thus, for biological activity in hyperarid soils. However, due to the extremely low biomass and extremely low rates of activity in these soils, the methods employed here were unable to provide robust evidence for activity. Overall, the hyperarid regions of the Atacama Desert are an important resource for researchers by providing a window into the environmental dynamics and subsequent microbial responses near the limit of habitability.
ContributorsGlaser, Donald M (Author) / Hartnett, Hilairy E (Thesis advisor) / Anbar, Ariel (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
189340-Thumbnail Image.png
Description
As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering.

As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering. This work demonstrates how traditional networks can be used to study generational events, how these networks can be supplemented with low-cost sensors, and the effectiveness of several control measures. First, an existing network was used to study the effect of COVID-19 travel restrictions on air quality in Maricopa County, Arizona, which would not have been possible without the historical record that a traditional network provides. Although this study determined that decreases in CO and NO2 were not unique to the travel restrictions, it was limited to only three locations due to network sparseness. The second part of this work expanded the traditional NO2 monitoring network using low-cost sensors, that were first collocated with a reference monitor to evaluate their performance and establish a robust calibration. The sensors were then deployed to the field to varying results; their calibration was further improved by cycling the sensors between deployment and reference locations throughout the summer. This calibrated NO2 data, along with volatile organic compound data, were combined to enhance the understanding of ozone formation in Maricopa County, especially during wildfire season. In addition to being in non-attainment for ozone standards, Maricopa County fails to meet particulate matter under 10 μm (PM10) standards. A large portion of PM10 emissions is attributed to fugitive dust that is either windblown or kicked up by vehicles. The third part of this work demonstrated that Enzyme Induced Carbonate Precipitation (EICP) treatments aggregate soil particles and prevent fugitive dust emissions. The final part of the work examined tire wear PM10 emissions, as vehicles are another significant contributor to PM10. Observations showed a decrease in tire wear PM10 during winter with little change when varying the highway surface type.
ContributorsMiech, Jason Andrew (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2023
189350-Thumbnail Image.png
Description
The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during

The prevalence and unique properties of airborne nanoparticles have raised concerns regarding their potential adverse health effects. Despite their significance, the understanding of nanoparticle generation, transport, and exposure remains incomplete. This study first aimed to assess nanoparticle exposure in indoor workplace environments, in the semiconductor manufacturing industry. On-site observations during tool preventive maintenance revealed a significant release of particles smaller than 30 nm, which subsequent instrumental analysis confirmed as predominantly composed of transition metals. Although the measured mass concentration levels did not exceed current federal limits, it prompted concerns regarding how well filter-based air sampling methods would capture the particles for exposure assessment and how well common personal protective equipment would protect from exposure. To address these concerns, this study evaluated the capture efficiency of filters and masks. When challenged by aerosolized engineered nanomaterials, common filters used in industrial hygiene sampling exhibited capture efficiencies of over 60%. Filtering Facepiece Respirators, such as the N95 mask, exhibited a capture efficiency of over 98%. In contrast, simple surgical masks showed a capture efficiency of approximately 70%. The experiments showed that face velocity and ambient humidity influence capture performance and mostly identified the critical role of mask and particle surface charge in capturing nanoparticles. Masks with higher surface potential exhibited higher capture efficiency towards nanoparticles. Eliminating their surface charge resulted in a significantly diminished capture efficiency, up to 43%. Finally, this study characterized outdoor nanoparticle concentrations in the Phoenix metropolitan area, revealing typical concentrations on the order of 10^4 #/cm3 consistent with other urban environments. During the North American monsoon season, in dust storms, with elevated number concentrations of large particles, particularly in the size range of 1-10 μm, the number concentration of nanoparticles in the size range of 30-100 nm was substantially lower by approximately 55%. These findings provide valuable insights for future assessments of nanoparticle exposure risks and filter capture mechanisms associated with airborne nanoparticles.
ContributorsZhang, Zhaobo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Shock, Everett (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2023
168758-Thumbnail Image.png
Description
Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from

Lithium (Li) is a trace element in kerogen, but the content and isotopic distribution (δ7Li) in kerogen has not previously been quantified. Furthermore, kerogen has been overlooked as a potential source of Li to sedimentary porefluids and buried sediments. Thus, knowing the content and isotopic composition of Li derived from kerogen may have implications for research focused on the Li-isotopes of buried sediments (e.g., evaluating paleoclimate variations using marine carbonates).The objective of this work is to better understand the role of kerogen in the Li geochemical cycle. The research approach consisted of 1) developing reference materials and methodologies to measure the Li-contents and δ7Li of kerogen in-situ by Secondary Ion Mass Spectrometry, 2) surveying the Li-contents and δ7Li of kerogen bearing rocks from different depositional and diagenetic environments and 3) quantifying the Li-content and δ7Li variations in kerogen empirically in a field study and 4) experimentally through hydrous pyrolysis. A survey of δ7Li of coals from depositional basins across the USA showed that thermally immature coals have light δ7Li values (–20 to – 10‰) compared to typical terrestrial materials (> –10‰) and the δ7Li of coal increases with burial temperature suggesting that 6Li is preferentially released from kerogen to porefluids during hydrocarbon generation. A field study was conducted on two Cretaceous coal seams in Colorado (USA) intruded by dikes (mafic and felsic) creating a temperature gradient from the intrusives into the country rock. Results showed that δ7Li values of the unmetamorphosed vitrinite macerals were up to 37‰ lighter than vitrinite macerals and coke within the contact metamorphosed coal. To understand the significance of Li derived from kerogen during burial diagenesis, hydrous pyrolysis experiments of three coals were conducted. Results showed that Li is released from kerogen during hydrocarbon generation and could increase sedimentary porefluid Li-contents up to ~100 mg/L. The δ7Li of coals becomes heavier with increased temperature except where authigenic silicates may compete for the released Li. These results indicate that kerogen is a significant source of isotopically light Li to diagenetic fluids and is an important contributor to the global geochemical cycle.
ContributorsTeichert, Zebadiah (Author) / Williams, Lynda B. (Thesis advisor) / Bose, Maitrayee (Thesis advisor) / Hervig, Richard (Committee member) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022