Matching Items (1,071)
Filtering by

Clear all filters

Description
Historic mining of heavy metals (HMs) in Arizona has resulted in the creation of abandoned mine lands (AML), which can become sources of contamination and possible risks to human health. The goals of this work were to support the creation of databases useful for AML risk assessment, and to use

Historic mining of heavy metals (HMs) in Arizona has resulted in the creation of abandoned mine lands (AML), which can become sources of contamination and possible risks to human health. The goals of this work were to support the creation of databases useful for AML risk assessment, and to use Patagonia, Arizona as a case study to assess the relationship between water quality and proximity to AML sites. The of risk assessment database for AML contains risk calculation results from published national and international studies, with 4,667 data points from 75 unique papers. From the data visualization, 18 environmental contaminants, Cd, Co, Cr, Cu, F-, Fe, Hg, Mn, NH4+, Ni, Pb, Sb, Se, Tl, V, W, and Zn, had data points with non-carcinogenic health risks above commonly used health risk benchmarks. Comparatively, of the studies that computed a carcinogenic health risk, the seven contaminants evaluated (As, Cd, Cr, Cr(VI), Hg, Ni, Pb) all had data exceeding a 10-6 cancer risk (CR) reference value. In Patagonia, Pb, Cu, and Zn were measured at higher concentrations when closer to AML sites than at points downstream. These findings were corroborated by a comparison of contaminant concentrations across the watershed area, which additionally suggested a higher surface water solubility of HMs such as boron and barium.
ContributorsTerrones, Wesley (Author) / Hamilton, Kerry (Thesis director) / Halden, Rolf (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2024-05