Matching Items (1,069)
Filtering by

Clear all filters

152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
152167-Thumbnail Image.png
Description
Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal in constructed wetlands was investigated using batch experiments and continuous-flow microcosms containing decaying wetland plants. CEC removal varied depending on their physico-chemical properties, hydraulic residence time (HRT) and relative quantities of plant materials in the microcosms. At comparable HRTs, ENM removal improved with higher quantity of plant materials due to enhanced sorption which was verified in batch-scale studies with plant materials. A fate-predictive model was developed to evaluate the role of design loading rates on organic CEC removal. Areal removal rates increased with hydraulic loading rates (HLRs) and carbon loading rates (CLRs) unless photolysis was the dominant removal mechanism (e.g. atrazine). To optimize CEC removal, wetlands with different CLRs can be used in combination without lowering the net HLR. Organic CEC removal in denitrifying conditions of constructed wetlands was investigated and selected CECs (e.g. estradiol) were found to biotransform while denitrification occurred. Although level of denitrification was affected by HRT, similar impact on estradiol was not observed due to a dominant effect from plant biomass quantity. Overall, both modeling and experimental findings suggest considering CLR as an equally important factor with HRT or HLR to design constructed wetlands for CEC removal. This dissertation provided directions to select design parameters for ozonation (ozone dose) and constructed wetlands (design loading rates) to meet organic CEC removal goals. Future research is needed to understand fate of ENMs during ozonation and quantify the contributions from different transformation mechanisms occurring in the wetlands to incorporate in a model and evaluate the effect of wetland design.
ContributorsSharif, Fariya (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Fox, Peter (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
ContributorsYang, Rui (Author) / Lai, Ying-Cheng (Thesis advisor) / Duman, Tolga M. (Committee member) / Akis, Richard (Committee member) / Huang, Liang (Committee member) / Arizona State University (Publisher)
Created2012
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
151230-Thumbnail Image.png
Description
What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to

What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations.
ContributorsNi, Xuan (Author) / Lai, Ying-Cheng (Thesis advisor) / Huang, Liang (Committee member) / Yu, Hongbin (Committee member) / Akis, Richard (Committee member) / Arizona State University (Publisher)
Created2012
137145-Thumbnail Image.png
Description
Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom.

Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom. By partnering with State Farm and AT&T, we were able to raise awareness about the dangers of distracted driving and collected over 200 pledges from students to never text and drive.
ContributorsHibbs, Jordan Ashley (Author) / Miller, Clark (Thesis director) / Parmentier, Mary Jane (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / Graduate College (Contributor)
Created2014-05
137685-Thumbnail Image.png
Description
Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources

Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources for public health initiatives could yield increased effectiveness of influenza treatments. As it stands there is a lack of evolutionary data available for such use, particularly in the southwest. Our study focused on the sequencing and phylogeography of southwestern Influenza A samples from the Mayo Clinic. We fully sequenced two neuraminidase genes and combined them with archived sequence data from the Influenza Research Database. Using RAxML we identified the clade containing our sequences and performed a phylogeographic analysis using ZooPhy. The resultant data were analyzed using programs such as SPREAD and Tracer. Our results show that the southwest sequences emerged from California and the ancestral root of the clade came from New York. Our Bayesian maximum clade credibility (MCC) tree data and SPREAD analysis implicates California as a source of influenza variation in the United States. This study demonstrates that phylogeography is a viable tool to incorporate evolutionary data into existing forms of influenza surveillance.
ContributorsTurnock, Adam Ryan (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / Pycke, Benny (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137709-Thumbnail Image.png
Description
Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United

Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United States Census 60.3% of the population in South Phoenix identified as Latino, 25.75% of the total population was foreign born. Of the foreign born population, 88.95% were of Latin American origin (United States Census Bureau, 2007-2011 American Community Survey). Understanding how Latino immigrants perceive differences in health between their communities in country of origin and communities in the United States is largely unknown. Irrespective of political positions, understanding how Latino immigrants perceive personal health and the health of their communities is of interest to inform public policy and implement needed interventions in the
public health sphere.
Methods: Semi-structured interviews were collected from 55 adults from the South Phoenix community between November 2009 and September 2010. Interviews were digitally recorded with participant permission and transcribed. Of those collected, 48 transcribed interviews were analyzed using a codebook designed by the researcher. Percent agreement evaluated inter-rater reliability.Results: Latino immigrants in South Phoenix largely agree that health quality is heavily dependent on personal responsibility and not an intrinsic attribute of a given place. Emotional contentedness and distress, both factors of mental health, are impacted by cross-cultural differences between Latino and U.S. culture systems.
Conclusions: As people’s personal perceptions of differences in health are complex concepts influenced by personal backgrounds, culture, and beliefs, attempting to demark a side of the border as ‘healthier’ than the other using personal perceptions is overly simplified and misses central concepts. Instead, exploration of individual variables impacting health allowed this study to gain a more nuanced understanding in how people determine quality of both personal and environmental health. While Latino migrants in South Phoenix largely agree that health is based on personal responsibility and choices, many nonetheless experience higher levels of contentedness and emotional health in their country of origin.
ContributorsGray, Laurel (Author) / Wutich, Amber (Thesis director) / Quiroga, S. Seline (Committee member) / Nelson, Margaret (Committee member) / Slade, B. Alexandra (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05