Matching Items (33)
Filtering by

Clear all filters

Description
Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is

Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is insufficient to assess microbial diversity or make functional inferences. I examined endolithic microbiomes using 16S rRNA genes and lipid-soluble photosynthetic pigments as biomarkers, with the goal of reassessing endolith diversity by contrasting traditional and molecular approaches. This led to the unexpected finding that in all 41 littoral carbonate microbiomes investigated around Isla de Mona (Puerto Rico) and Menorca (Spain) populations of anoxygenic phototrophic bacteria (APBs) in the phyla Chloroflexi and Proteobacteria, were abundant, even sometimes dominant over cyanobacteria. This was not only novel, but it suggested that APBs may have been previously misidentified as morphologically similar cyanobacteria, and opened questions about their potential role as euendoliths. To test the euendolithic role of photosynthetic microbes, I set a time-course experiment exposing virgin non-porous carbonate substrate in situ, under the hypothesis that only euendoliths would be able to initially colonize it. This revealed that endolithic microbiomes, similar in biomass to those of mature natural communities, developed within nine months of exposure. And yet, APB populations were still marginal after this period, suggesting that they are secondary colonizers and not euendolithic. However, elucidating colonization dynamics to a sufficiently accurate level of molecular identification among cyanobacteria required the development of a curated cyanobacterial 16S rRNA gene reference database and web tool, Cydrasil. I could then detect that the pioneer euendoliths were in a novel cyanobacterial clade (named UBC), immediately followed by cyanobacteria assignable to known euendoliths. However, as bioerosion proceeded, a diverse set of likely cryptoendolithic cyanobacteria colonized the resulting pore spaces, displacing euendoliths. Endolithic colonization dynamics are thus swift but complex, and involve functionally diverse agents, only some of which are euendoliths. My work contributes a phylogenetically sound, functionally more defined understanding of the carbonate endolithic microbiome, and more specifically, Cydrasil provides a user-friendly framework to routinely move beyond morphology-based cyanobacterial systematics.
ContributorsRoush, Daniel (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Anbar, Ariel (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2020
161811-Thumbnail Image.png
Description
I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by

I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by metabolite analyses and confocal microscopy, demonstrating that the ebo gene cluster, was not only required for scytonemin biosynthesis, but was involved in the export of scytonemin monomers to the periplasm. Further, the product of gene scyE was also exported to the periplasm where it was responsible for terminal oxidative dimerization of the monomers. These results opened questions regarding the functional universality of the ebo cluster. To probe if it could play a similar role in organisms other than scytonemin producing cyanobacteria, I developed a bioinformatic pipeline (Functional Landscape And Neighbor Determining gEnomic Region Search; FLANDERS) and used it to scrutinize the neighboring regions of the ebo gene cluster in 90 different bacterial genomes for potentially informational features. Aside from the scytonemin operon and the edb cluster of Pseudomonas spp., responsible for nematode repellence, no known clusters were identified in genomic ebo neighbors, but many of the ebo adjacent regions were enriched in signal peptides for export, indicating a general functional connection between the ebo cluster and biosynthetic compartmentalization. Lastly, I investigated the regulatory span of the two-component regulator of the scytonemin operon (scyTCR) using RNAseq of scyTCR deletion mutants under UV induction. Surprisingly, the knockouts had decreased expression levels in many of the genes involved in hormogonia differentiation and in a putative multigene regulatory element, hcyA-D. This suggested that UV could be a cue for developmental motility responses in Nostoc, which I could confirm phenotypically. In fact, UV-A simultaneously elicited hormogonia differentiation and scytonemin production throughout a genetically homogenous population. I show through mutant analyses that the partner-switching mechanism coded for by hcyA-D acts as a hinge between the scytonemin and hormogonia based responses. Collectively, this dissertation contributes to the understanding of microbial adaptive responses to environmental stressors at the genetic and regulatory level, highlighting their phenomenological and mechanistic complexity.
ContributorsKlicki, Kevin (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Wilson, Melissa (Committee member) / Mukhopadhyay, Aindrila (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2021
161867-Thumbnail Image.png
Description
Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial

Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial community, a “cyanosphere”, that is characterized by a high abundance of diazotrophic heterotrophs. This suggests mutualistic relationships wherein nutrients are traded between phototrophs and heterotrophs. To explore these relationships, I performed targeted, pedigreed isolation of cyanosphere members and used co-cultivation to recreate the mutualism in culture. Results showed that, in the absence of fixed nitrogen, M. vaginatus grew well when co-cultured with cyanosphere diazotrophs, but only poorly or not at all when alone or with non-cyanosphere diazotrophs. In agreement with this, the experimental provision of nitrogen to natural populations resulted in a loss of diazotrophs from the cyanosphere compared to controls, but the addition of phosphorus did not. Additionally, the convergence of M. vaginatus trichomes into large bundles held by a common sheath was elicited in culture by the addition of cyanosphere diazotrophs, pointing to a role of cyanobacterial motility responses in the development of mutualistic interactions. I then demonstrated that the tendency of M. vaginatus to stay within bundles and close to the sheath-dwelling cyanosphere was dependent on the cyanosphere population size. This effect was likely mediated by glutamate that acted as a signaling molecule rather than as a N source and impacted the gliding speed and negative chemophobic responses on the cyanobacterium. Glutamate seems to be used as a cue to spatially optimize cyanobacterium-cyanosphere mutualistic exchanges. My findings have potential practical applications in restoration ecology, which I further pursued experimentally. Co-inoculation of soil with cyanosphere diazotrophs resulted in swifter development of biocrusts over inoculation with the cyanobacterium only. Further, their addition to disturbed native soils containing traces of cyanobacteria sufficed for the formation of cohesive biocrusts without cyanobacterial inoculation. The inclusion of such “biocrust probiotics” in biocrust restoration is recommended. Overall, this body of work elucidates the hitherto unknown role of beneficial heterotrophic bacteria in the initial formation and development of biocrusts.
ContributorsNelson, Corey (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Penton, C. Ryan (Committee member) / Gile, Gillian (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2021