Matching Items (312)
Filtering by

Clear all filters

151669-Thumbnail Image.png
Description
In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer

In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer phenomena governing contaminant transport and bioavailability. These phenomena cannot be properly studied using commonly conducted laboratory batch microcosms lacking realistic representation of the processes named above. Instead, relevant processes are better understood by using flow-through systems (sediment columns). However, flow-through column studies are typically conducted without replicates. Due to additional sources of variability (e.g., flow rate variation between columns and over time), column studies are expected to be less reproducible than simple batch microcosms. This was assessed through a comprehensive statistical analysis of results from multiple batch and column studies. Anaerobic microbial biotransformations of trichloroethene and of perchlorate were chosen as case studies. Results revealed that no statistically significant differences were found between reproducibility of batch and column studies. It has further been recognized that laboratory studies cannot accurately reproduce many phenomena encountered in the field. To overcome this limitation, a down-hole diagnostic device (in situ microcosm array - ISMA) was developed, that enables the autonomous operation of replicate flow-through sediment columns in a realistic aquifer setting. Computer-aided design (CAD), rapid prototyping, and computer numerical control (CNC) machining were used to create a tubular device enabling practitioners to conduct conventional sediment column studies in situ. A case study where two remediation strategies, monitored natural attenuation and bioaugmentation with concomitant biostimulation, were evaluated in the laboratory and in situ at a perchlorate-contaminated site. Findings demonstrate the feasibility of evaluating anaerobic bioremediation in a moderately aerobic aquifer. They further highlight the possibility of mimicking in situ remediation strategies on the small-scale in situ. The ISMA is the first device offering autonomous in situ operation of conventional flow-through sediment microcosms and producing statistically significant data through the use of multiple replicates. With its sustainable approach to treatability testing and data gathering, the ISMA represents a versatile addition to the toolbox of scientists and engineers.
ContributorsMcClellan, Kristin (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
152438-Thumbnail Image.png
Description
Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized

Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box".
ContributorsOntiveros-Valencia, Aura (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2014
150594-Thumbnail Image.png
Description
As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). NM mass balance closure was achieved by measuring NMs in liquid effluent and waste biosolids. All NMs were well removed at the typical biomass concentration (1~2 gSS/L). However, carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC60; >95% removal). Although most NMs did not settle out of the feed solution without bacteria present, approximately 65% of the titanium dioxide was removed even in the absence of biomass simply due to self-aggregation and settling. Experiments conducted over 4 months with daily loadings of nC60 showed that nC60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. As most NMs appear to accumulate in biosolids, future research should examine the fate of NMs during disposal of WWTP biosolids, which may occur through composting or anaerobic digestion and/or land application, incineration, or landfill disposal.
ContributorsWang, Yifei (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
150491-Thumbnail Image.png
Description
We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.
ContributorsLee, HoJoon (Author) / Johnston, Stephen A. (Thesis advisor) / Kumar, Sudhir (Committee member) / Miller, Laurence (Committee member) / Stafford, Phillip (Committee member) / Sykes, Kathryn (Committee member) / Arizona State University (Publisher)
Created2012
150498-Thumbnail Image.png
Description
Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating

Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating communities in the hydrogen-based membrane biofilm reactor (MBfR). The MBfR is used for the biological reduction of oxidized contaminants in water using hydrogen supplied as the electron donor by diffusion through gas-transfer fibers. First, I characterized a new anaerobic dechlorinating community developed in our laboratory, named DehaloR^2, in terms of chlorinated ethene turnover rates and assessed its microbial community composition. I then carried out an experiment to correlate performance and community structure for trichloroethene (TCE)-fed microbial consortia. Fill-and-draw reactors inoculated with DehaloR^2 demonstrated a direct correlation between microbial community function and structure as the TCE-pulsing rate was increased. An electron-balance analysis predicted the community structure based on measured concentrations of products and constant net yields for each microorganism. The predictions corresponded to trends in the community structure based on pyrosequencing and quantitative PCR up to the highest TCE pulsing rate, where deviations to the trend resulted from stress by the chlorinated ethenes. Next, I optimized a method for simultaneous detection of chlorinated ethenes and ethene at or below the Environmental Protection Agency maximum contaminant levels for groundwater using solid phase microextraction in a gas chromatograph with a flame ionization detector. This method is ideal for monitoring biological reductive dechlorination in groundwater, where ethene is the ultimate end product. The major advantage of this method is that it uses a small sample volume of 1 mL, making it ideally suited for bench-scale feasibility studies, such as the MBfR. Last, I developed a reliable start-up and operation strategy for TCE reduction in the MBfR. Successful operation relied on controlling the pH-increase effects of methanogenesis and homoacetogenesis, along with creating hydrogen limitation during start-up to allow dechlorinators to compete against other microorgansims. Methanogens were additionally minimized during continuous flow operation by a limitation in bicarbonate resulting from strong homoacetogenic activity.
ContributorsZiv-El, Michal (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Arizona State University (Publisher)
Created2012
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012
148137-Thumbnail Image.png
Description

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators,

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators, and everyday citizens.

ContributorsFranco, David (Author) / Fonseca-Chávez, Vanessa (Thesis director) / Martínez, Rafael (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05