Matching Items (323)
Filtering by

Clear all filters

136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135978-Thumbnail Image.png
Description
Advances in peptide microarray technology have allowed for the creation of fast-paced and modular experiments within affinity ligand discovery. Previously, low density peptide arrays of 10,000 peptides were used to identify low affinity peptide ligands for a target protein; an approach that can be subsequently improved upon with a number

Advances in peptide microarray technology have allowed for the creation of fast-paced and modular experiments within affinity ligand discovery. Previously, low density peptide arrays of 10,000 peptides were used to identify low affinity peptide ligands for a target protein; an approach that can be subsequently improved upon with a number of techniques. VDAP[a] offers more information about the relative affinity of protein-peptide interactions via signal intensity in contrast to high throughput screening (HTS) and display technologies which offer binary data. Now, high density peptide arrays with 130,000 to 330,000 peptides are available that allow screening across peptide libraries of greater diversity. With this increase in scale and diversity, faster analytical tools are needed to adequately characterize array data. Using the statistical power available in the R programming language, we have created a flexible analysis package that efficiently processes high density peptide array data from a variety of layouts, rank existing peptide hits, and utilize signal intensity data to generate new hits. This analysis provides a user-friendly method to efficiently analyze high density peptide array data, generate peptide leads for targeted therapeutic development, and further improve peptide array technologies.
ContributorsMoore, Cody Allen (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Barrett, The Honors College (Contributor)
Created2015-12
136919-Thumbnail Image.png
Description
Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic bacteria called Rhodobacter sphaeroides, a non-sulfur purple bacteria that grows aerobically in the dark by respiration. There have been many

Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic bacteria called Rhodobacter sphaeroides, a non-sulfur purple bacteria that grows aerobically in the dark by respiration. There have been many contributions throughout the history of this group of bacteria. Rhodobacter sphaeroides is metabolically very diverse as it has many different ways to obtain energy--aerobic respiration and anoxygenic photosynthesis being just a couple of the ways to do so. This project is part of a larger ongoing project to study different mutant strains of Rhodobacter and the different ways in which carries out electron transfer/photosynthesis. This thesis focused on the improvements made to protocol (standard procedure of site directed mutagenesis) through a more efficient technique known as infusion.
ContributorsNucuta, Diana Ileana (Author) / Woodbury, Neal (Thesis director) / Lin, Su (Committee member) / Loskutov, Andrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137167-Thumbnail Image.png
Description
The influenza virus is the main cause of thousands of deaths each year in the United States, and far more hospitalizations. Immunization has helped in protecting people from this virus and there are a number of therapeutics which have proven effective in aiding people infected with the virus. However, these

The influenza virus is the main cause of thousands of deaths each year in the United States, and far more hospitalizations. Immunization has helped in protecting people from this virus and there are a number of therapeutics which have proven effective in aiding people infected with the virus. However, these therapeutics are subject to various limitations including increased resistance, limited supply, and significant side effects. A new therapeutic is needed which addresses these problems and protects people from the influenza virus. Synbodies, synthetic antibodies, may provide a means to achieve this goal. Our group has produced a synbody, the 5-5 synbody, which has been shown to bind to and inhibit the influenza virus. The direct pull down and western blot techniques were utilized to investigate how the synbody bound to the influenza virus. Our research showed that the 5-5 synbody bound to the influenza nucleoprotein (NP) with a KD of 102.9 ± 74.48 nM. It also showed that the synbody bound strongly to influenza viral extract from two different strains of the virus, the Puerto Rico (H1N1) and Sydney (H3N2) strains. This research demonstrated that the 5-5 synbody binds with high affinity to NP, which is important because influenza NP is highly conserved between various strains of the virus and plays an important role in the replication of the viral genome. It also demonstrated that this binding is conserved between various strains of the virus, indicating that the 5-5 synbody potentially could bind many different influenza strains. This synbody may have potential as a therapeutic in the future if it is able to demonstrate similar binding in vivo.
ContributorsKombe, Albert E. (Author) / Diehnelt, Chris (Thesis director) / Woodbury, Neal (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
136898-Thumbnail Image.png
Description
One of the major challenges that were yet to be solved for solid phase peptide synthesis was the lack of an efficient peptide sequencing technique that was less hazardous, easier to perform , and was more cost-effective. Sequencing peptides were held important in the field of Chemistry and Biochemistry because

One of the major challenges that were yet to be solved for solid phase peptide synthesis was the lack of an efficient peptide sequencing technique that was less hazardous, easier to perform , and was more cost-effective. Sequencing peptides were held important in the field of Chemistry and Biochemistry because it aided in drug discovery, finding ligands that bind to a specific target protein and finding alternative agents in transporting molecules to its desired location. Therefore, the overall purpose of this experiment was to develop a method of solid phase sequencing technique that was more environmental friendly, sequences at a faster rate, and was more cost-effective.
ContributorsCordovez, Lalaine Anne Ordiz (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Legutki, Joseph Barten (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
147638-Thumbnail Image.png
Description

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers and policymakers have declared that the policies and institutions created to fight the battle have left devastation in their wake. Despite high economic and social costs, missed opportunities in public health and criminal justice sectors, and increasing limits on our personal freedoms, all the measures taken to eradicate drug abuse and trafficking have been unsuccessful. Not only that, but militarized police tactics, mass incarceration, and harsh penalties that stifle opportunities for rehabilitation, growth, and change disproportionately harm poor and minority communities. <br/>Because reform in U.S. drug policy is badly needed, the goals of America’s longest war need to be reevaluated, implications of the initiative reexamined, and alternative strategies reconsidered. Solutions must be propagated from a diverse spectrum of contributors and holistic understanding through scientific research, empirical evidence, innovation, public health, social wellbeing, and measurable outcomes. But before we can know where we should be headed, we need to appreciate how we got to where we are. This preliminary expository investigation will explore and outline the history of drug use and prohibition in the United States before the War on Drugs was officially declared. Through an examination of the different patterns of substance use, evolving civil tolerance of users, racially-charged anti-drug misinformation/propaganda campaigns, and increasingly restrictive drug control policies, a foundation for developing solutions and strengths-based strategies for drug reform will emerge.

ContributorsSherman, Brooke (Author) / Jimenez-Arista, Laura (Thesis director) / Mitchell, Ojmarrh (Committee member) / College of Integrative Sciences and Arts (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147752-Thumbnail Image.png
Description

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs,

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs, in the laboratory and beyond. I present both negative and positive conceptions about rats and the realities of these conceptions. Finally, I talk about the changes that need to take place in laboratory research, why animals are still used in research today, and the alternatives that exist to animal models.

Created2021-05
147537-Thumbnail Image.png
Description

Urban encroachment into traditional snake territories has long been underway; likely increasing snake sightings in urban neighborhoods. With increasing overlap, I ask if the perceptions of snakes are actually influencing urban residents to say that snakes are a significant problem in their neighborhood today? I was interested in finding out

Urban encroachment into traditional snake territories has long been underway; likely increasing snake sightings in urban neighborhoods. With increasing overlap, I ask if the perceptions of snakes are actually influencing urban residents to say that snakes are a significant problem in their neighborhood today? I was interested in finding out whether or not there would be a positive correlation between the perception of snakes being a problem within a neighborhood and the actual number of sightings recorded. To address this, I used survey responses from 2017 regarding the risk perception of snakes from twelve neighborhoods within Maricopa County. These responses were then compared to the number of snake sightings within those same neighborhoods over a span of ten years using community science data from iNaturalist. The average results of the people who took the survey perceived that snakes were not a problem in their neighborhood. It was also found that in the outlying areas closer to natural snake habitat (desert preserves), a positive correlation between a higher survey response and a higher number of snake sightings could be seen. Overall, the conclusion of the data revealed that the perceptions of residents did not align with the actual number of snake sightings.

ContributorsMiranda, Caroline (Author) / Bateman, Heather (Thesis director) / Brown, Jeffrey (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147543-Thumbnail Image.png
Description

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD)

The following is a review of the literature on Equine Assisted Psychotherapy (EAP) as a potential treatment for US service members with Post-Traumatic Stress Disorder(PTSD). EAP is a relatively new and undeclared psychotherapeutic technique that presents limitless opportunities for holistic growth in patients who have Post-Traumatic Stress Disorder (PTSD) who have not achieved an improvement in their quality of life as a result of other conventional treatments. Due to its heterogenous nature, PTSD directly dismantles the brain’s reward circuitry pathway, altering the individual’s capacity for emotional resolution. For US veterans suffering from PTSD who have not received palpable improvements through traditional talk therapies, EAP is a treatment for emotional vulnerability and communal reintegration when used in conjunction with techniques of attachment theory and cognitive-behavioral theory. Previous studies show an uptick in interpersonal trust and an alleviation of maladaptive defensive mechanisms set in place by the individual to protect the psyche. Research is indicative of an alleviation in overall symptomatology with an emphasis in the rehearsal of therapeutic strategies within interpersonal relationships to rehabilitate social engagement and cognition. Due to the lack of foundational acceptance of EAP thus far as a treatment for PTSD, it is challenging to ascertain a marginalized understanding of the holistic effects of EAP on PTSD as a stand alone psychotherapeutic treatment.

ContributorsThompson, Kylee Shae (Author) / Jimenez, Laura (Thesis director) / Murphree, Julie (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05