Matching Items (128)
Filtering by

Clear all filters

141429-Thumbnail Image.png
Description

The impacts of land-cover composition on urban temperatures, including temperature extremes, are well documented. Much less attention has been devoted to the consequences of land-cover configuration, most of which addresses land surface temperatures. This study explores the role of both composition and configuration—or land system architecture—of residential neighborhoods in the

The impacts of land-cover composition on urban temperatures, including temperature extremes, are well documented. Much less attention has been devoted to the consequences of land-cover configuration, most of which addresses land surface temperatures. This study explores the role of both composition and configuration—or land system architecture—of residential neighborhoods in the Phoenix metropolitan area, on near-surface air temperature. It addresses two-dimensional, spatial attributes of buildings, impervious surfaces, bare soil/rock, vegetation and the “urbanscape” at large, from 50 m to 550 m at 100 m increments, for a representative 30-day high sun period. Linear mixed-effects models evaluate the significance of land system architecture metrics at different spatial aggregation levels. The results indicate that, controlling for land-cover composition and geographical variables, land-cover configuration, specifically the fractal dimension of buildings, is significantly associated with near-surface temperatures. In addition, statistically significant predictors related to composition and configuration appear to depend on the adopted level of spatial aggregation.

ContributorsKamarianakis, Yiannis (Author) / Li, Xiaoxiao (Author) / Turner II, B. L. (Author) / Brazel, Anthony J. (Author)
Created2017-12-05
141431-Thumbnail Image.png
Description

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes of land-cover composition and pattern at the neighborhood or larger level using regression models. This study explores the effects of land system architecture—composition and configuration, both pattern and shape, of fine-grain land-cover classes—on LST of single family residential parcels in the Phoenix, Arizona (southwestern USA) metropolitan area. A 1 m resolution land-cover map is used to calculate land architecture metrics at the parcel level, and 6.8 m resolution MODIS/ASTER data are employed to retrieve LST. Linear mixed-effects models quantify the impacts of land configuration on LST at the parcel scale, controlling for the effects of land composition and neighborhood characteristics. Results indicate that parcel-level land-cover composition has the strongest association with daytime and nighttime LST, but the configuration of this cover, foremost compactness and concentration, also affects LST, with different associations between land architecture and LST at nighttime and daytime. Given information on land system architecture at the parcel level, additional information based on geographic and socioeconomic variables does not improve the generalization capability of the statistical models. The results point the way towards parcel-level land-cover design that helps to mitigate the urban heat island effect for warm desert cities, although tradeoffs with other sustainability indicators must be considered.

ContributorsLi, Xiaoxiao (Author) / Kamarianakis, Yiannis (Author) / Ouyang, Yun (Author) / Turner II, B. L. (Author) / Brazel, Anthony J. (Author)
Created2017-02-14
141433-Thumbnail Image.png
Description

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface temperature, decomposed to 30 m, a new measure of configuration, the normalized moment of inertia, and U.S. Census data to address the question for two randomly selected samples comprising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to most other studies, land configuration has a stronger influence on LST than land composition. In addition, both land configuration and architecture combined with cadastral, demographic, and economic variables, capture a significant amount of explained variance in LST. The results indicate that attention to land architecture in the development of or reshaping of neighborhoods may ameliorate the summer extremes in LST.

ContributorsLi, Xiaoxiao (Author) / Li, Wenwen (Author) / Middel, Ariane (Author) / Harlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Turner II, B. L. (Author)
Created2015-12-29
141370-Thumbnail Image.png
Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

ContributorsTurner II, B. L. (Author) / Kasperson, Roger E. (Author) / Matson, Pamela A. (Author) / McCarthy, James J. (Author) / Corell, Robert W. (Author) / Christensen, Lindsey (Author) / Eckley, Noelle (Author) / Kasperson, Jeanne X. (Author) / Luers, Amy (Author) / Martello, Marybeth L. (Author) / Polsky, Colin (Author) / Pulsipher, Alexander (Author) / Schiller, Andrew (Author)
Created2003-03-07
141148-Thumbnail Image.png
Description

RESEARCH QUESTION: Does Online "Working Out Work" as a Treatment and Prevention for Depression in Older Adults? An Analysis of a Prescribed and Monitored Exercise Program Administered via the Internet for Senior Adults with Depression.
OBJECTIVE: The purpose of this study is to investigate and access the effectiveness of an online

RESEARCH QUESTION: Does Online "Working Out Work" as a Treatment and Prevention for Depression in Older Adults? An Analysis of a Prescribed and Monitored Exercise Program Administered via the Internet for Senior Adults with Depression.
OBJECTIVE: The purpose of this study is to investigate and access the effectiveness of an online prescribed and monitored exercise program for the treatment of depression in Older Adults. The Dependent Variable for the study is Depression. The Independent Variable for the study is the Effects of Exercise administered via the Internet and the population is geriatric adults defined as senior adults aged 50 and older. Depression is defined by Princeton University Scholars (Wordnet, 2006) as a mental state characterized by a pessimistic sense of inadequacy and a despondent lack of activity.
METHODS: The presence and severity of depression will be assessed by using The Merck Manual of Geriatrics (GDS-15) Geriatric Depression Scale. Assessments will be performed at baseline, before and after the treatment is concluded. The subjects will complete the Physical Activity Readiness Questionnaire (PAR-Q) prior to participating in an exercise program three times per week.
LIMITATIONS OF RESEARCH: The limitations of this study are: 1) There is a small sample size limited to Senior Adults aged 50 - 80, and 2) there is no control group with structured activity or placebo, therefore researcher is unable to evaluate if the marked improvement was due to a non-specific therapeutic effect associated with taking part in a social activity (group online exercise program). Further research could compare and analyze the positive effects of a muscular strength training exercise program verses a cardiovascular training exercise program.

ContributorsCaballero-Garcia, Robelyn (Author) / Waldron, Kathleen (Thesis advisor) / College of Liberal Arts and Sciences (Contributor)
Created2011-05-02
Description
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR.

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Created2015-11-16
130293-Thumbnail Image.png
Description

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.

ContributorsLee, Zarraz (Author) / Poret-Peterson, Amisha (Author) / Siefert, Janet L. (Author) / Kaul, Drishti (Author) / Moustafa, Ahmed (Author) / Allen, Andrew E. (Author) / Dupont, Chris L. (Author) / Eguiarte, Luis E. (Author) / Souza, Valeria (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2017-05-30
Description
Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand

Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand how a large herbivorous carnivore can complete its life cycle on a narrow and seemingly low quality bamboo diet.
Behavioural results showed that pandas during the year switched between four main food categories involving the leaves and shoots of two bamboo species available. Nutritional analysis suggests that these diet shifts are related to the concentrations and balances of calcium, phosphorus and nitrogen. Notably, successive shifts in range use and food type corresponded with a transition to higher concentrations and/or a more balanced intake of these multiple key constituents.
Our study suggests that pandas obligatorily synchronize their seasonal migration and reproduction with the disjunct nutritional phenologies of two bamboo species. This finding has potentially important implications for habitat conservation for this species and, more generally, draws attention to the need for understanding the nutritional basis of food selection in devising management plans for endangered species.
ContributorsNie, Yonggang (Author) / Zhang, Zejun (Author) / Raubenheimer, David (Author) / Elser, James (Author) / Wei, Wei (Author) / Wei, Fuwen (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
130262-Thumbnail Image.png
Description

I present the case for a fire-centric scholarship, and suggest the transition between burning living landscapes and lithic ones (in the form of fossil fuels) would make a good demonstration of what such scholarship might do and what its value could be.

ContributorsPyne, Stephen (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-10-23
Description
This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission (PETE) can substantially enhance thermionic emission intensity from a p-type semiconductor. An n-type diamond/p-type silicon structure was illuminated with 400–450

This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission (PETE) can substantially enhance thermionic emission intensity from a p-type semiconductor. An n-type diamond/p-type silicon structure was illuminated with 400–450 nm light, and the spectra of the emitted electrons showed a work function less than 2 eV and nearly an order of magnitude increase in emission intensity as the temperature was increased from ambient to ∼400 °C. Thermionic emission was negligible in this temperature range. The results are modeled in terms of contributions from PETE and direct photoelectron emission, and the large increase is consistent with a PETE component. The results indicate possible application in combined solar/thermal energy conversion devices.
ContributorsSun, Tianyin (Author) / Koeck, Franz (Author) / Rezikyan, Aram (Author) / Treacy, Michael (Author) / Nemanich, Robert (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-09-15